

Computational Fatigue Models to Assist in Risk-Based Certification of Additively Manufactured Metallic Parts

Robert Tryon, Animesh Dey, Michael Oja

VEXTEC Corporation

ASTM International Conference on Advanced Manufacturing – ICAM 2023

Approved for public release

Nov. 1, 2023

Today's Presentation

1. Introduction

ICAM2023

- 2. Modeling and simulation approach
 - Machined specimens
 - As-printed-surface (APS) specimens
 - Surface roughness stress gradients
 - Surface material contour layer
- 3. Assess risk of adopting AM repairs and replacements
 - Probability of Failure
 - Fatigue strength
- 4. Integration of M&S into the certification process
- 5. Conclusions

Acknowledgements

•AFRL SBIR

-TPOC: Pat Golden USAF AFMC AFRL/RXCM

-SBIR partner: Aerojet Rocketdyne, Dan Matejczyk

-SBIR partner: UES/RoboMet®, Veeraraghavan Sundar

•USAF LCMC

-TPOCs: Kirk Easterday, Howard Sizek

-Technical Analyst: Emmanuel De Leon

VEXTEC Introduction

ICAM2023

Headquarters Nashville, TN – 20+ years in business

VPS-MICRO® Software

Predicting fatigue durability and risk of metallic products and systems

Value Proposition

Supplement physical testing for increased confidence in accelerated qualification of parts

VPS-MICRO is:

Validated by US Government research programs

Utilized globally by commercial industries

Backed by 7 US Patents

Probabilistic Microstructural Fatigue Modeling

- Just as FEA uses a digital representation of the part to model the stresses, VPS-MICRO uses a digital representation of the material to model strength
 - -Fatigue strength is the big cost driver and is governed by the material microstructure
 - -Addresses fatigue strength

ICAM2023

- -Creates digital models of the material microstructure, utilizing physics of failure principles
- -Simulates surface effects (roughness, carburization, etc.)

Standard Work Protocol (SWP) Builds the Virtual Twin of a Component

- SWP software links macrostructure FEA to microstructure
- The software can also take additional stress inputs for residual stress and K_t effects

Apply SWP to Smooth Round Bar Geometry

SWP Material Model Inputs

Material Model Parameter	Туре	Typical Data Source		
Shear Modulus	Deterministic value	Material data sheet for alloy/heat treat		
Poisson's Ratio	Deterministic value	Material data sheet for alloy/heat treat		
Grain Boundary Strength	Deterministic value	Threshold crack growth per ASTM E647 (slow rate; high R-ratio)		
Short Crack Coefficient	Deterministic value	Used in this process as a calibration parameter		
COV on Micro Stress	Deterministic value	Material system anisotropy (literature)		
Specific Fracture Energy	Deterministic value	Proportional to the area under the stress/strain curve per ASTM E8		
Grain Orientation	Probabilistic distribution	Material crystal system (literature)		
Grain Size	Probabilistic distribution	Metallography (preparation per ASTM E3); measure per ASTM E1382		
Frictional Strength	Probabilistic distribution	Cyclic yield strength per ASTM E606		
Long Crack Growth (Paris Equation da/dN = C∆K ⁿ)	n (deterministic value) C (probabilistic distribution)	Fatigue crack growth per ASTM E647		
Defects / Voids / Inclusions	Size (probabilistic distribution)Metallography (preparation per ASPopulation density (probabilistic distribution)E3); measure per ASTM E45 / ASE1245			

Irrespective of the alloy, VEXTEC has a <u>standard set of</u> <u>inputs</u> for its fatigue modeling capabilities

Most of the input data can be obtained from standard material testing (ASTM)

ICAM2023 VPS-MICRO Software Output

- Windows desktop tool (no HPC/cloud)
- Wide range of applications
 - Standalone tool for simple specimen geometry models
 - Integrate FEA models for complex geometry of full-scale components
- Outputs
 - Simulated S-N fatigue curve
 - Virtual fracture surface + crack growth
 - Detailed statistical analyses
- Customizable software product
 - Interface with standard FEA software
 - Predict risk of fatigue failure from complex in-service loading spectrums

Software Partners:

Example of IN625 Smooth Round Bars

Model inputs for machined surface

ICAM2023

- Monotonic stress strain to failure curves
- Cyclic stress strain curves
- Fatigue crack growth curves
- Cross section micrographs

Model Predictions for Machined Specimens

• 100 specimens generated at each stress level

ICAM2023

- Each specimen has a different life because microstructure is different (but statistically similar) for each specimen
- Model is calibrated so average life is similar to test data at middle stress level
- Model predicts fatigue lives at high and low stress level

R = 0

Model Predictions for Different Load Ratio

- Model calibrated to R = 0 material parameters used for R = -1
- Only max and min stress levels changed
- 100 specimens generated at each stress level
- Model predicts fatigue lives at different load ratio

Computationally Predict Fatigue Debit of As-Printed Surface (APS) Geometry

- Computationally predict the fatigue knockdown due to the effect of metal additively manufactured APS geometry using digital engineering
 - Calibrate model to smooth specimens
 - Without modification to the smooth model material parameters, predict the knockdown in APS specimens
 - Important APS features included in the model
 - Stress gradients due to the crevices and pits in the specimen surface
 - Stress gradients due to build orientation surface undulations
 - Distinguish the material outer layer from the inner core (gradient microstructure)

VEXTEC

Apply SWP to APS Geometry

As-Printed Surface

ICAM2023

Geometry surface

Cracks initiate in crevices

RoboMet Analysis – Vertically Built APS Specimen

RoboMet serial sectioning

ICAM2023

- 1.5 µm/section removal rate
- 500x total magnification
- $0.1 \, \mu m^3 \text{ voxel resolution}_{100} \, {}^{200}_{100}$

- STL file used to create Analysis FEM
 - Looked at several interacting geometries
 - Crevice interaction has minor effect on stress
 - Local geometry in crevice has the strongest impact

Surface Roughness Stress

• Spatial Distribution of K_t

Actual surface

FEA of APS

 K_t field with random amplitude and frequency

Statistical K_t gradient

Modeling Random Field of Surface Stress Concentrations

- Model generates a crack-like defect of size d and grows the crack into the depth D
- d and s are random
- Generates population of many defects per square inch

APS Microstructure Surface Layer

• Surface is different from core –Grains have few carbides

ICAM2023

- Depleted region is free of second-phase particles (carbides and laves phase)
- Measured micro hardness, and estimating the change in yield strength and grain boundary strength
 - -Surface to core matrix hardness .87 to 1
 - -Surface to core matrix yield strength 0.8 to 1
 - Assume surface to core frictional strength 0.8 to 1
 - Assume reduction in grain boundary strength

VPS-MICRO Predictions for As-Printed Surface

 Model calibrated to smooth R = 0 material parameters used for APS

ICA/\2023

- Surface roughness stress *K_t* and surface layer properties changed
- 100 specimens generated at each stress level
- Model predicts fatigue lives for APS

VPS-MICRO Predictions for APS with Different Load Ratio

- Model based on APS R = 0
 - Model calibrated to smooth R = 0 material parameters
 - Surface roughness stress *K_t* and surface layer properties changed
- Only max and min stress levels changed to model R = -1
- 100 specimens generated at each stress level
- Model predicts fatigue lives for APS and different load ratio

SWP Applied to AM Blade Repair

• Standard work protocol is unchanged from specimen analysis

Engine Airfoil Design Inputs

- Original blade is mill annealed Ti-6Al-4V
- Leading edge repair patch is laser powder DED Ti-6AI-4V
- Ansys modal analysis of mode 6 has high stress in patch
- Ansys extension creates an FEV file with node IDs, areas, and stresses for groups of surface nodes of interest; <u>multi-group FEV files are allowed in VPS-MICRO</u>

AFRL Ansys airfoil meshed model

AFRL Ansys stress results – Mode 6

"VEXTEC FEV Generation" extension in Ansys to select nodes in both the blade & patch regions for the FEV file

Engine Airfoil Material Inputs from Literature

Material Model Parameter	Conventional Ti-6AI-4V	Powder-DED Ti-6AI-4V		
Shear Modulus	44,000 MPa	43,200 MPa		
Poisson's Ratio	0.342	0.342		
Grain Boundary Strength	2 MPavm	2.5 MPavm		
Short Crack Coefficient	0.001	0.0001		
COV on Micro Stress	0.15	0.12		
Volume Fraction	α phase = 0.72; β phase = 0.28	single phase		
Specific Fracture Energy	α: 0.391 MN/m; β: 0.391 MN/m	0.131 MN/m		
Grain Orientation	α : "schmidhex"; β : "schmidbeta"	"schmidhex"		
Grain Size	Lognormal Distribution α: mean 3.43E-5 m; COV 0.2 β: mean 1.36E-5 m; COV 0.25	Lognormal Distribution mean 1.78E-4 m; COV 0.27		
Frictional Strength	Lognormal Distribution α : mean 845.3 MPa; COV 0.3 β : mean 760.8 MPa; COV 0.3	Lognormal Distribution mean 911.7 MPa; COV 0.3		
Long Crack Growth (Paris Eq. da/dN = C∆K ⁿ)	n = 3.96; C Lognormal Distribution mean 1.15E-12; COV 0.3	n = 3.8; C Lognormal Distributio mean 1.30E-12; COV 0.45		

Conventional Ti-6AI-4V

Powder-DED Ti-6AI-4V

Set

Set 2
Set 3

Set 4

Set §

Set 6

DEDTi64 test 10 (different load sets) -- SN

Simulation Results – Specimen Geometry

•VPS-MICRO predictions track well with literature-sourced specimen fatigue test data

1040-

1020

1000-

Engine Airfoil VPS-MICRO Analysis

- •R = -1 Mode 6 airfoil S-N curves
- •Undamaged vs. DED-repaired Ti-6AI-4V
- DED-repaired fatigue strength is lower than undamaged
- <u>Only VPS-MICRO can</u> provide information on performance at R = -1 loading, since physical tests were only run at R = 0.1

SWP Applied to AM Replacement Bell Crank

• Standard work protocol is unchanged from specimen analysis

Engine Throttle Linkage Bell Crank

- Current bell crank is cast 410 stainless steel
- Candidate replacement is LPBF CoCr

Bell Crank Design Inputs

• FEM of each relative position with 1 lb. load at upper rod. Max stress ~ 0.2 to 0.5 ksi. Different positions had high stresses in different locations. AM material properties can vary with location.

Bell Crank Material Inputs from Literature

Material Model Parameter	410 Stainless Steel	AM Cobalt Chrome			
Shear Modulus	11,328 ksi	11,045 ksi			
Poisson's Ratio	0.28	0.275			
Grain Boundary Strength	2.02 ksivin	3.0 ksivin			
Short Crack Coefficient	0.01	0.01			
COV on Micro Stress	0.15	0.31			
Specific Fracture Energy	2.466 kip/in	1.741 kip/in			
Grain Orientation	"Martensite"	"Schmid" (FCC)			
Grain Size	Lognormal Dist. mean = 3.543E-4 in, COV = 0.3	Lognormal Dist. mean = 2.681E-3 in, COV = 0.3			
Frictional Strength	Lognormal Dist. mean = 102.3 ksi, COV = 0.3	Lognormal Dist. mean = 121.4 ksi, COV = 0.15			
Long Crack Growth (Paris Equation da/dN = C∆K ⁿ)	n = 3.4525; C Lognormal Dist. n = 3.24; C Lognorm mean 5.86E-11, COV = 0.45 mean 8.015E-11, Co				

Simulation Results – Specimen Geometry

 VPS-MICRO predictions track well with literature-sourced specimen fatigue test data

ICAM2023

SWP Analysis Results – Bell Crank

 Bell crank simulated S-N curves at 40 degree operational position

ICA/\2023

- •Conventionally-processed 410 SS vs. AM Co-Cr
- AM Co-Cr fatigue strength is lower than 410 SS
- These quantitative results were achieved before AM parts were built or specimen test data were gathered

ICAM2023

future, incorporating advanced

AM Development and Certification

potential impact of advanced properties models

		properties models			
Task	Task Duration	Cumulative Duration	Task Duration		Cumulative Duration
1. Detail material process	prerequisite	start	prerequisite		start
2. Qualify material process	9 mo.	9 mo.	complete in parallel with 4-7		start
3. Develop design properties	6 mo.	15 mo.			
4. Detail component design and production plan	6 mo.	21 mo.	6 mo.	Model and test critical properties	6 mo.
5. Pre-production article(s) plan, fab, evaluate	9 mo.	30 mo.	6 mo.		12 mo.
6. Complete AMRR and QPP; finalize production process controls.	3 mo.	33 mo.	3 mo.		15 mo.
7. Build, acceptance-test and qual. test qual. units	12 mo.	45 mo.	6 mo.		21 mo.
8. Build and acceptance-test production units	9 mo.	54 mo. (4.5 yr.)	6 mo.		27 mo. (2.2 yr.)

Typical Duration for a NASA-STD-6030 Class A2 Component

current typical

Advanced properties models enable

- A. Expedited, improved design properties development
- B. Improved process control; higher-sensitivity, lower-cost, shorter-schedule
- C. Opportunities for accelerated qualification and certification

VEXTEC?

Conclusions

- VPS-MICRO can be used in preliminary design to assess the suitability of an AM part
- The solution can be used to determine the suitability of machined vs. as-printed surface for an AM part
- Computational modeling can be integrated into certification processes

Thank you!