AIAA SciTech 2022 Conference

Fatigue Analysis of

Additive Manufacturing Materials with Microstructural Properties

Ji Eun Park

Lockheed Martin Aeronautics Company, Fort Worth TX

Michael Oja, Robert Tryon, Animesh Dey

VEXTEC, Brentwood, TN

Derrick Lamm

Lockheed Martin Enterprise Operations-Corporate Headquarters

3-7 January 2022

> Methodology of Fatigue Life Analysis with Microstructural Properties

- High Cycle Fatigue Tests
 - L-PBF AlSi10Mg
 - ➢ L-PBF Ti 6Al-4V
- Microstructural Material Property Development of L-PBF AlSi10Mg and TI 64 Specimens
- Comparison of Test Data and Analysis Results
- Conclusion
- Future Works

Methodology of Fatigue Life Analysis with Microstructural Properties

© 2022 Lockheed Martin Corporation. All Rights Reserved. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

Fatigue and Crack Growth Analysis of AM Materials: ICME Application

- Since microstructural properties are different per base power, machine specification, and material process, microstructural analysis is required for AM material fatigue analysis.
- > Cost and schedule constraints to test each case by materials and processes.
- Need to quantify effects of AM process variations on mechanical performance of AM-built parts
- Simulate different microstructures and develop statistical distributions of microstructural properties.
- To capture variability of AM material properties, probabilistic approach is needed with statistical distributions.

AM is an Ideal Case of ICME Application

AM Fatigue Life Process

Fatigue Analysis of AM, VPS-MICRO

- VEXTEC developed a fatigue analysis tool that predicts fatigue life with statistical distributions of microstructure, VPS-MICRO
- VPS-MICRO utilizes Monte Carlo analysis method combining the models of dislocation theory with random variable statistics
- > VPS-MICRO has three stages of fatigue life: crack initiation, small crack growth and long crack growth
 - Crack initiation: smooth fracture surfaces at angle inclined to the loading direction -> shear stress fracture
 - The equilibrium condition of the grain on the first loading: $\tau_1^D + (\tau_1 k) = 0$
 - Small Crack Growth: a function of the crack tip opening displacement (CTOD). Used the theory of continuously distributed dislocation to model the CTOD $\frac{da}{dN} = C'(\Delta COD)^{n'}$
 - > Long Crack Growth: Linear Elastic Fracture Mechanics (LEFM) and not affected by microstructure

High Cycle Fatigue Test of L-PBF AlSi10Mg and Ti 6Al-4V

High Cycle Fatigue Tests

- > L-PBF AlSi10Mg and Ti 6Al-4V specimens were built per LM AM material and process specifications.
 - Ambient temperature

10,000

AlSi10Mg

S (ksi)

Maximum Stress,

1.000

- > xy and z build directions
- > Ti 64 specimens were hot isostatic pressed (HIP) and annealed

1.000.000

➢ HCF tests were run at two stress ratios, R=0.1 and −1

100,000

Fatigue Life, N (cycles)

Microstructural Material Property Development

Defects of PBF AlSi10Mg Specimens

- > In the magnified images, some lack-of-fusion features were identified.
- ➤ The largest dimension of each defect over 20µm in size was measured, and defect size and defect population density distributions are calculated.

Grain Size and Orientation of PBF AlSi10Mg

- > Electron Backscatter Diffraction (EBSD) analysis for microstructural characterization.
- > Grain size was determined from the minor axis length of the elliptical fit to grains.

Grain Size Distribution of PBF Ti 64 Specimens

- > Grain size is the microstructural feature that determines the length of a slip distance.
- > This parameter is probabilistic, and is determined by conventional metallographic techniques

Fatigue Analysis of PBF AlSi10Mg and Ti 6Al-4V

Stress-Life Comparison of AlSi10Mg, R=0.1

N.

Stress-Life Comparison of AlSi10Mg, R=-1.0

© 2022 Lockheed Martin Corporation. All Rights Reserved. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

Stress-Life Comparison of Ti 6Al-4V, XY Build Direction

16

Stress-Life Comparison of Ti 6Al-4V, Z Build Direction

Conclusion and Future Works

© 2022 Lockheed Martin Corporation. All Rights Reserved. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

Conclusion

- Fatigue properties of AM materials depend on microstructure such as defects/inclusions and grain size/orientation.
- Microstructure variation is not able to be generalized by deterministic values -> must be represented probabilistically
- VPS-MICRO utilizes the statistics of the microstructure of AM processed materials, AlSi10Mg and Ti 6Al-4V.
 - > Statistical distributions of microstructure are obtained and added to VPS-MICRO.
 - Monte Carlo simulation generated microstructural variability
- The comparison of HCF test data and VPS-MICRO indicates the fatigue life predictions are generally in good agreement except xy build direction at R=-1.0 for Ti 6AI-4V.
- Note that full material property development is required for more accurate fatigue life prediction.

Future Works

- > Determine Probability of Detection (PoD) of AM parts.
- Establish NDI processes
- Determine IFS for durability and damage tolerance analyses
- Set up the procedure for risk analysis
- Material property determination
 - Generate synthetic structures from experimental statistics. Generate equivalent microstructures/models and represent the statistical nature of materials process and properties
 - > Predict microstructure using in-situ data (laser intensity) or thermal history with DREAM.3D

