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Methodology of Fatigue Life Analysis 
with Microstructural Properties
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Fatigue and Crack Growth Analysis of AM Materials: ICME Application

➢ Since microstructural properties are different per base power, machine 
specification, and material process, microstructural analysis is required for AM 
material fatigue analysis.

➢Cost and schedule constraints to test each case by materials and processes.
➢Need to quantify effects of AM process variations on mechanical performance of 

AM-built parts
➢ Simulate different microstructures and develop statistical distributions of 

microstructural properties.
➢To capture variability of AM material properties, probabilistic approach is needed 

with statistical distributions.

AM is an Ideal Case of ICME Application
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AM Fatigue Life Process
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Fatigue Analysis of AM, VPS-MICRO 

➢ VEXTEC developed a fatigue analysis tool that predicts fatigue life with statistical distributions of 
microstructure, VPS-MICRO

➢ VPS-MICRO utilizes Monte Carlo analysis method combining the models of dislocation theory with random 
variable statistics

➢ VPS-MICRO has three stages of fatigue life: crack initiation, small crack growth and long crack growth
➢ Crack initiation: smooth fracture surfaces at angle inclined to the loading direction -> shear stress 

fracture
➢The equilibrium condition of the grain on the first loading: 

➢ Small Crack Growth: a function of the crack tip opening displacement (CTOD). Used the theory of 
continuously distributed dislocation to model the CTOD

➢ Long Crack Growth: Linear Elastic Fracture Mechanics (LEFM) and not affected by microstructure

𝜏1
𝐷 + 𝜏1 − 𝑘 = 0

𝑑𝑎

𝑑𝑁
= 𝐶′(Δ𝐶𝑂𝐷)𝑛

′
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High Cycle Fatigue Test of 
L-PBF AlSi10Mg and Ti 6Al-4V
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High Cycle Fatigue Tests

➢ L-PBF AlSi10Mg and Ti 6Al-4V specimens were built per LM AM material and process specifications.
➢ Ambient temperature
➢ xy and z build directions
➢ Ti 64 specimens were hot isostatic pressed (HIP) and annealed

➢ HCF tests were run at two stress ratios, R=0.1 and -1

AlSi10Mg Ti 64



© 2022 Lockheed Martin Corporation. All Rights Reserved. Published by the American Institute of 
Aeronautics and Astronautics, Inc., with permission.

9

Microstructural Material Property Development
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Defects of PBF AlSi10Mg Specimens

➢ In the magnified images, some lack-of-fusion features were identified.
➢ The largest dimension of each defect over 20mm in size was measured, and defect size and defect population 

density distributions are calculated. 

Z-Build

XY-Build
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Grain Size and Orientation of PBF AlSi10Mg

➢ Electron Backscatter Diffraction (EBSD) analysis for microstructural characterization. 
➢ Grain size was determined from the minor axis length of the elliptical fit to grains.

Z-Build

XY-Build
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Grain Size Distribution of PBF Ti 64 Specimens

➢ Grain size is the microstructural feature that determines the length of a slip distance. 
➢ This parameter is probabilistic, and is determined by conventional metallographic techniques

Z direction
XY direction
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Fatigue Analysis of PBF AlSi10Mg and Ti 6Al-4V
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Stress-Life Comparison of AlSi10Mg, R=0.1
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Stress-Life Comparison of AlSi10Mg, R=-1.0
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Stress-Life Comparison of Ti 6Al-4V, XY Build Direction



© 2022 Lockheed Martin Corporation. All Rights Reserved. Published by the American Institute of 
Aeronautics and Astronautics, Inc., with permission.

17

Stress-Life Comparison of Ti 6Al-4V, Z Build Direction
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Conclusion and Future Works
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Conclusion

➢ Fatigue properties of AM materials depend on microstructure such as defects/inclusions 
and grain size/orientation.

➢ Microstructure variation is not able to be generalized by deterministic values -> must be 
represented probabilistically 

➢ VPS-MICRO utilizes the statistics of the microstructure of AM processed materials, 
AlSi10Mg and Ti 6Al-4V.
➢ Statistical distributions of microstructure are obtained and added to VPS-MICRO.
➢ Monte Carlo simulation generated microstructural variability

➢ The comparison of HCF test data and VPS-MICRO indicates the fatigue life predictions are 
generally in good agreement except xy build direction at R=-1.0 for Ti 6Al-4V.

➢ Note that full material property development is required for more accurate fatigue life 
prediction.
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Future Works

➢ Determine Probability of Detection (PoD) of AM parts.
➢ Establish NDI processes
➢ Determine IFS for durability and damage tolerance analyses
➢ Set up the procedure for risk analysis
➢ Material property determination

➢ Generate synthetic structures from experimental statistics.  Generate equivalent microstructures/models 
and represent the statistical nature of materials process and properties

➢ Predict microstructure using in-situ data (laser intensity) or thermal history with DREAM.3D
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Any Questions?


