

Computational Tools to Accelerate Additive Manufacturing Development

> Robert Tryon Animesh Dey, Robert McDaniels Ibrahim Awad, Nate Oliver 28 October 2020

2020 AM Medical Summit Powered by ASME

VEXTĘC²

Presentation Outline

2

- Introduction
- Role of ICME in AM rapid certification
- Certification framework
- Computational fatigue model
- Examples
 - AM fatigue certification / prediction

VEXTEC Introduction

Headquarters

America Makes

Nashville, TN – 20 years in business

VPS-MICRO® Software

Predicting fatigue durability and risk of metallic products and systems

Value Proposition

Supplement physical testing for increased confidence in accelerated qualification of parts

VPS-MICRO is:

Validated by US Government research programs

Utilized globally by commercial industries

Backed by 7 US Patents

VEXTĘC

Role of ICME (Integrated Computational Materials Engineering)

Save time and money by:

Reducing

physical testing burden for qualification of new materials/sources

Accelerating

push of Additive Manufacturing into standard production

Identifying

causes of component fatigue failure

4

- Current AM development / validation process
 is iterative, costly and slow
 - Build, test, analyze, repeat
- Long lead times and high development costs
 - Design allowable databases
 - Machine manufacturer specific
 - NDE and post process inspection

Integrated Computational Material Engineering (ICME) tools can provide up to **50% time/cost savings** for AM process development.

What Do We Mean by ICME-Based Certification?

- We are <u>not changing the required elements</u> of the certification process; we are instead simulating important aspects.
- Build and sense what is happening layer-by-layer, point-by-point, to have a high fidelity 3-D model of local properties.
- Take that model and simulate what would happen if you test it.
- Only test the part when you have high confidence it will pass the test \rightarrow reducing costly repeats.

Current USAF Initiatives

AFLCMC/RO Rapid Sustainment Office

- Rapid Qualification for Metal Additive Manufactured Parts
- TPOC: Howard Sizek, <u>howard.sizek@us.af.mil</u>

• <u>AFRL/RX</u>

 Computational Simulation Software for Improved Fatigue Prediction of Additive Manufactured Components

7

TPOC: Pat Golden, <u>patrick.golden@us.af.mil</u>

Certification Solution for AM Needs

8

• Tight integration of these ICME toolsets that link microstructure to the properties to the performance.

- Deliver an affordable, rapid solution with the following benefits:
 - Reduction in AM process development time, testing, and cost
 - Quantification of 'effects of defects' impact on fatigue life - including microstructural defects
- Working with University of Dayton Research Institute and UTC-ARTOS

6. AM Process Models С VEXTEC? 8. Failure Causing UNIVERSAL TECHNOLOGY 3. Simulate Part а Factors (FCFs) Based on Library of **Previous Experience** d 9. Material Digital University of Dayton Research Institute Twin (MDT) 2. AM Machine 11. Predictive **Process Parameters** Software (OpenAdditive[™]) (VPS-MICRO®) е **15.** Risk of Passing 12. Virtual Failure 10. Structural **AF** Certification 1. CAD File Analysis (FEA) Data f Criteria 9

AM ICME Framework: Simulate the Build

America Makes

AM ICME Framework: Build the Part

AM ICME Framework: Calibrate the Models

Uncertainty Propagation

- Use all available data and knowledge.
- Use physics-based computational analysis.

- Use probabilistic analysis to explicitly propagate statistical uncertainty.
- Update when new data/knowledge becomes available.

AM ICME Framework: Confident the Build will Pass

ICME Fatigue Software VPS-MICRO

 Just as FEA uses a digital representation of the part to model the stresses, VPS-MICRO uses a digital representation of the material to model strength.

America Makes

- Fatigue strength is the big cost driver and is governed by the material microstructure.
- Software addresses fatigue strength.
- Software creates digital models of the material microstructure.
- Software simulates effect of surface roughness.

With AM, the need for analysis software is even more urgent because of the difficult-to-test-for internal surface roughness of complex geometries.

Computational Fatigue Software

• Links microstructure to macrostructural FEA to:

- Predict scatter in fatigue.
- Predict complex part failure rates.
- ID allowable microstructural tolerances in manufacturing process.
- Uses physics-of-failure modeling to analytically predict the cause and extent of fatigue failure.

Microstructural Definition

Build Orientation vs. Damage Mechanism

17

Gong PhD Thesis, University of Louisville (2013)

Material Property Comparison (Forged vs. EBM)

[†] Additional model parameters (not listed) were unchanged between forged & EBM conditions ^{††} "Grain size" is the size of the g-lamellar colonies	Material Properties Influenced by Mfg. Technique [†]		Ti-6Al-4V Forged + β-Annealed		Ti-6AI-4V EBM (Horizontal)		Ti-6AI-4V EBM (Vertical)	
within prior β grains	Description	Distribution	Mean Value	COV	Mean Value	COV	Mean Value	cov
Probabilistic	Grain size ^{††}	Lognormal	0.025 in	0.3	0.0034 in	0.3	0.0034 in	0.3
Probabilistic	Frictional strength	Weibull	113 ksi	0.3	83 ksi	0.3	83 ksi	0.3
	Specific fracture energy	Deterministic	7500 lbs/in	N/A	7700 lbs/in	N/A	7700 lbs/in	N/A
Probabilistic	Defect size (population density)	Lognormal	None	N/A	None	N/A	0.004 in (200/in ²)	0.3
	Asperity factors	Deterministic	0.01,1,0.1,1	N/A	None	N/A	0.014,1,1,1	N/A

Simulation Compared to Test Data

- Forged specimens
- 100 specimens simulated per loading level

Simulation Compared to Test Data

 Horizontal built specimens

America Makes

 100 specimens simulated per loading level

Build direction

Simulation Compared to Test Data

 Vertical built specimens

America Makes

 100 specimens simulated per loading level

Build direction

VEXTĘC?

Sensed Defects

Build Blocks

Defect Size and Location

Defect Fatigue Initiation Mechanism

 Defect observed in NDE initiated fatigue cracks

- 4 point bending specimens with holes machined to expose interior defects
- Fatigue testing showed that the defects in the high tensile stress regions initiated fatigue cracks

As-Built Surface Morphology

VEXTĘC

FEA Model of Surface Features

America Makes

Application to the Component

26

Computational micro*structural* fatigue software.

- Each element in a FE model can have a different distribution of microstructural properties.
- Virtual fatigue analysis simulation grain → element → component.
- Proven technology on forgings, castings, weldments (2 decades).
- Now being validated on AM parts.

Burst Prediction of AM Nickel

Superalloy Nozzle Vextec SLM Mondaloy Operating Proof Unit Calculated Actual Burst Pressure Pressure Burst Nominal 6.5 KSI 7.8 KSI >13 KSI 15.KSI Nominal Degrading Off-Nominal 6.5 KSI 7.8 KSI 11-13 KSI 12.2KSI A Quality **Off Nominal A** 10.5KSI Off-Nominal 6.5 KSI 7.8 KSI 11-12 KSI **B**3 Off-Nominal 6.5 KSI 7.8 KSI 11-12 KSI 9.2 KSI B2 0° **Off Nominal B** Nominal) 00 **Off Nominal A Off Nominal B** Nominal Off Nominal **VEXTEC** accurately predicted burst test failure location & pressure for different AM process settings.

America Makes

Scientific

New Material Qualification

29

Alternative Material for Airway Stent

- Sourcing a new material for entry into new markets
- Testing regimen to qualify a new material is a costly proposal

Simulations vs. Physical Survival Tests

Virtual Test of Material Cleanliness

Conclusions

- VPS-MICRO DOE simulations used by BSCI to develop response surface / design envelope
- Inclusion density was durability driver
- 'Material B' was removed from new material candidate list (saved time and money by avoiding protocol testing)

Re-cap

- Application of integrated computational materials engineering (ICME) software as part of a framework that uses:
 - AM process information
 - AM in-situ sensors
 - Stress analysis and damage tolerance simulations
- It allows the certification process to be re-structured into an affordable, rapid solution on a part-by-part basis:
 - Quantification of AM variation within and between parts
 - Reducing costs in operation and sustainment activities, while also increasing readiness
 - Proven workflow of the software's inputs/outputs allows for a reliable, repeatable computational process to assist decision making

This computational framework will provide the ability to optimize and scale AM processes virtually, reducing the subsequent physical test burden for qualification