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Abstract Statistical elastic micro-stress analysis of single-phase FCC polycrystalline metallic material has been 

conducted using 3-D microstructural cubic FEA model by Fortran-MSC Patran/Nastran software. In this paper, single-

phase polycrystalline metallic material is modeled as an ensemble of grains, and all grains are assumed to have 

anisotropic mechanical properties with uniformly random orientations. The response of the polycrystal is the aggregate 
response of the constituent grains. Grain size, shape and orientation have been considered to study the micro-stress 

distribution in the model. Micro-stress analysis is performed using the statistical volume element (SVE) model with 200 

grains. The results show that grain maximum stress and grain center stress have been found to be strongly correlated with 

the grain orientation and weak correlation with grain shape. The representative volume element (RVE) size for only one 

grain has been investigated. For illustrating, FCC materials, Nickel-based waspaloy, has been investigated. Finally, the 

micro-stress distribution difference for this SVE model under stress control and strain control has been investigated.  
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1. Introduction 
 
Macro-scale mechanical analysis usually lacks connection with the microstructure properties of the actual structure, 

and in most cases, the material is considered homogeneous in macro-level analysis. It is well known that, from a micro-

scale prospective, the material is heterogeneous with spatial variations in the properties. A wide class of material 

microstructures display discontinuities in local properties, such as polycrystals and composite materials. One of the issues 

in solid mechanics analysis is the transition from a heterogeneous microstructure to an approximating continuum model. 

Random field models [1] have been established for the microstructural variations in the mechanical properties of 

heterogeneous materials which could be used in microstructure model [2] to predict micro-stress distribution within the 

polycrystalline metallic materials. 

Voronoi tessellation has been widely used in mechanical engineering to generate 2-D or 3-D models to simulate 

microstructure of heterogeneous materials. Kumar [3] has developed a three dimensional method to establish a 

representative volume element (RVE) by Voronoi tessellation. The properties of the RVE model were investigated by 

Kumar, et al.[4] and found to be geometrically correct. The model has been used to investigate the micro-stress of 
different materials with anisotropic property in several studies [5, 6]. Limited number of three-dimensional cell model 

(only five grains in the cell) has been developed [7] which does not satisfy the need of statistical significance. Most 

simulations of material deformation and damage relied on the 2-D model [10-15] because they are much easier to build 

and solve. Ghosh and his coworkers [8, 9] have shown that 2-D Voronoi models are only effective for thin film structure, 

but for three-dimensional structures, the 2-D approximation is inaccurate and produced misleading micro-stress results. 

The micro-stress is particularly important in damage mechanisms that initiate on a very small scale such as fracture and 

fatigue [16].  

In this paper, statistical elastic micro-stress analysis of single-phase FCC polycrystalline metallic material has been 

conducted using 3-D microstructural cubic FEA model which was presented in paper [2]. The single-phase 

polycrystalline metallic material is modeled as an ensemble of grains, and all grains are assumed to have anisotropic 

mechanical properties with uniformly random orientations. Using this method, a SVE is obtained, which is a 
polycrystalline aggregate of the individual grains. Each grain is considered a continuum material with anisotropic 

mechanical behavior. The properties are assumed to vary from grain to grain. The model is a random field model and 

includes uncertainties in grain size, shape, orientation. This paper presents the application of this automatic method to 

establish the mesodomain that considers the uncertainties mentioned above, and to study the macrostructural mechanical 

behavior from the view of micromechanics. Linear static stress analysis has been performed using the SVE model, and 

further, the von Mises stress of nucleation sites and the center of each grain, and maximum von Mises stress of each grain 

are presented. The results show that grain maximum stress and grain center stress have a strong correlation with the grain 

orientation and weak correlation with grain shape. The representative volume element (RVE) size for only one grain has 

been investigated. For illustrating, FCC material, Nickel-based Waspaloy, has been investigated, and its Ziner parameters 

is 2.54. The micro-stress distribution difference for this SVE model under stress control and strain control has been 

investigated. 
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2. Statistical volume element cubic model generation 
 

Most metallic materials used in engineering design are polycrystalline. The mechanical behavior of these materials is 

determined by grain sizes, strengths, shapes and orientations. To study the property of polycrystalline structures at the 

micro scale, simulation of grain microstructure is necessary. Voronoi tessellation is a method that has been used in several 

studies of grain morphology. The majority of these studies have been two-dimensional simulations. However, three-
dimensional analysis is needed to truly understand grain orientation effects on microstructural behavior because grain 

orientation varies in three dimensions.   

The proposed microstructure simulation method relies on the physical process of forming granular pure metal with no 

defects (such as voids, cracks, etc.) under uniform cooling rates The results are observed to agree well with the 

experimentally observed statistics of the material microstructure. The following assumptions on grain growth are made: 

1. The grain growth is isotropic; that is, the grain will grow at the same velocity in all directions. Constant velocity 

occurs when each grain cools at the same rate. Therefore, this assumption is valid for single-phase materials with 

spatially consistent cooling rates. 

2. The grain growth will stop to form a grain boundary in one direction when it meets another growing grain boundary, 

but the grain will continue to grow along other directions. The grain growth process will end when its growth stops in 

all directions. 

3. There is no grain growth in the area of an already existing grain i.e., the grains are not allowed to overlap. 
4. The volume is fully populated with grains i.e., there are no voids. 

 

 

The statistical volume element cubic model is shown in Figure 1, which is generated by the method presented in [2], 

and part of the simulated model is shown in Figure 2. The mechanical behavior of these materials is determined by grain 

sizes, shapes and orientations. The SVE cubic model is a polycrystalline aggregate of the individual grains. Each grain is 

considered a continuum material with anisotropic mechanical behavior.  

 

3. Statistical volume element cubic model and linear statistical analysis 
 

It was shown that SVE cubic models with 100, 150 and 200 grains have congruence results considering different 
SVE cubic model grain sizes effect [2]. In this paper, a SVE cubic model with 200 grains has been chosen to investigate 

elastic analysis of a single-phase polycrystalline metallic material through micro-level response and all stresses are 

relative (local stress/applied stress). Only the tension loading case has been applied to the model. An elastic analysis of a 

single phase polycrystalline metallic material is considered for illustration. A cubic SVE with dimensions of 

10 10 10× × (Figure 3) is automatically created using the tessellation-PATRAN program (TPP). The boundary and 

loading conditions are shown in Figure 3 which represents SVE of 200 grains with mesh of 11333 nodes and 60134 four-

node tetrahedral elements. Nodes A(0,0,10), B(0,0,0), C(10,0,0), D(0,10,10), E(10,10,10), and F(10,10,0) are the corner 

nodes of the SVE model. Nodes A, B, and C are on bottom surface of the SVE model, while nodes D, E, and F are on top 

surface of the SVE model. The SVE model is subjected to an external pressure P of 10 psi in the negative y direction on 

top surface of the SVE model. On bottom surface of the SVE model, node A(0,0,10) is fixed with constrain of x=0, y=0, 

 
Figure 1: Cubic solid model 

 
Figure 2: Part of simulated model 



 3 

z=0; node B(0,0,0) is constrained with y=0, z=0; and all other nodes on the bottom surface are constrained with y=0 as 

described in the follow equation: 
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4. SVE cubic model statistcal micro-stress distribution investigation 
 

Statistcal micro-stress distribution has been investigated using the SVE cubic model created by the method presented 

in paper [2]. In all SVE cases, von Mises stress at the center of each grain is studied when considering boundary effect, 

geometry effect, orientation and grain shape effect to the micro-stress distribution of the SVE cubic model. It is necessary 
to mention that the definition of grain center location in the SVE cubic model is different from the definition of the grain 

‘seed’ location mentioned in paper [5]. The grain center location is at the volumn center of each grain, while the grain 

‘seed’ location is the location where grain is assumed to start to grow.   

 

4.1 Grain orientation and von Mises relationship in the SVE cubic model 

 

This section investigates the relationship between grain orientation and micro-stress distribution within SVE cubic 

model. In this paper, five sets of grain orientation have been studied using the SVE cubic model. Grain orientation has 

been defined by three Euler angles, 1θ , φ  and 2θ , which can be obtained by rotating 1θ  about original Z-axial first, then 

rotating φ  about primary Y-axial, and finally, rotating 2θ  about double primary Z-axial. In this paper, orientation factor 

is defined as φθ cossin 1
. The micro-stress distribution is related with orientation factor using this SVE cubic model. 

There are five orientation cases for each of the single-phase polycrystalline metallic material. The relationship between 

the maximum von Mises stress of each grain and its orientation factor are shown in Figure 4 and Figure 5, which show 

that grain orientation is a strong influence on maximum von Mises stress of each grain. When orientation factor value 

 
Figure 3: Boundary and loading conditions, Material properties of cubic 

model 
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ranges form 0.5 to 0.9, the corresponding grain would be in the range of maximum von Mises stress is high. As to the von 

Mises stress at the center of each grain in the SVE cubic model, the same trend occurs as shown in Figure 4 and Figure 5. 

The von Mises stress at center of each grain has a strong relation with its corresponding orientation factor within the SVE 

cubic model. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

von Mises Stress

O
r
ie

n
ta

ti
o

n
 F

a
c
to

r
 

Orientation_001

Orientation_002

Orientation_003

Orientation_004

Orientation_005

 
Figure 4: Grain orientation relationship with von Mises stress at the center of 

each grain for nickel-based Waspaloy material 
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Figure 5: Grain orientation relationship with maximum von Mises stress of 

each grain for nickel-based Waspaloy material 
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4.2 Representative volume element (RVE) size study for one grain 

 

The question arises as to how big the SVE need to be to predict 

statistically significant variation in stress for one grain? The SVE cubic 

model as shown in Figure 6 was used to investigate this question. Assuming 
a randomly chosen grain (Figure 7) on the surface of the SVE cubic model 

(Figure 6), the maximum von Mises stress of this grain and von Mises stress 

at the center of this grain are shown in Figure 10 and Figure 11 after 

analyzing finite element results and considering six sets of grain orientation 

in the SVE cubic mode. The geometry of first layer of grains of this specific 

grain is shown in Figure 8 with 11 grains, and the geometry of second layer 

grains is shown in Figure 9 with 37grains. For this particular exterior grain, 

its RVE size has been studied the following way: 

 

1. Consider six sets of grain orientation to study the C.O.V. of center stress 

for the particular grain. 

2. Fix the orientation of the particular grain in six cases, and study the stress distribution 
within the grain and C.O.V. of center stress of the grain. 

3. Fix the orientation of the particular grain and all its first layer neighbor grains in six 

cases, and study the stress distribution within the grain and C.O.V. of center stress of 

the grain. 

4. Fix the orientation of the particular grain and all its first layer neighbor grains and 

second layer neighbor grains, and study the stress distribution within the grain and 

C.O.V. of center stress of the grain. 

 

From the results listed in Table 1, it is found that the difference of maximum von 

Mises stress for the specific grain on the surface of SVE cubic model is convergent from 

0.419 to 0.070, and coefficient of variance (C.O.V.) is convergent from 0.118 to 0.023 
during Case 0 to Case 3 finite element analysis, which can also be found in Figure 10. At the same time from the results 

listed in Table 2, it is found that the difference of grain center von Mises stress for the specific grain on the surface of 

SVE cubic model is also convergent from 0.468 to 0.065, and C.O.V. is convergent from 0.175 to 0.027 during Case 0 to 

Case 3 finite element analysis, which can also be found in Figure 11. It means that the RVE size of one grain needs at 

least two layers of neighbor grains, and there is less effect on micro-stress of the specific grain if just changing grain 

orientation beyond the second layer within the SVE cubic model. Here, due to the specific grain is an exterior grain, its 

first layer has 11 grains, and its second layer has 37 grains only. 

 
Figure 6: SVE model of microstructure 

 
Figure 7: The grain need 

to be considered. 

 
Figure 8: First layer grains of the grain 

 
Figure 9: Second layer grains of the grain 
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Table 1: Maximum von Mises stress difference and its C.O.V. of the specific grain 

Case Case 0 Case 1 Case 2  Case 3 

Maximum - Minimum  0.419 0.172 0.100 0.070 

C.O.V. 0.118 0.051 0.027 0.023 

 

Table 2: Grain center von Mises stress difference and its C. O.V. for the specific grain  

Case Case 0 Case 1 Case 2 Case 3 

Maximum - Minimum 0.468 0.177 0.146 0.065 

C.O.V. 0.175 0.087 0.059 0.027 

* Case 0 --- Original six sets of grain orientation within the SVE cubic model. 

       Case 1 --- The specific grain with fixed orientation. 

       Case 2 --- The specific grain and its first layer with fixed orientation. 

           Case 3 --- The specific grain, its first and second layer with fixed orientation. 
 

 

4.3 Micro-stress differenece for stress control and strain control boundary condition 

 

The question arises as to the difference between stress controlled and strain controlled boundary conditions. For the 

stress control boundary condition micro-stress analysis, 10 psi pressure is applied on the top surface of the SVE cubic 

model as shown in Figure 3. In order to compare the micro-stress distribution under strain control boundary condition, 

strain is applied on the top surface of the SVE cubic model which is equivalent average displacement under the stress 

control boundary condition. There are two sets of orientation investigated for both the stress control and strain control 

boundary condition. The grain maximum von Mises stress and grain center von Mises stress distribution of the SVE cubic 

model have been obtained as shown in Figure 12 and Figure 13, respectively. The maximum von Mises stress of each 
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Figure 10: Maximum von Mises stress of grain 
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Figure 11: von Mises stress at grain center 



 7 

grain under strain control boundary condition is slightly higher than that of under stress control boundary condition in 

each orientation sets for the SVE cubic model. The same phenomenon is seen with the grain center von Mises stress. The 

overall micro-stress distribution is very similar under both loading conditions, and the only difference between them is 

that the top two layers of grains have slightly different micro-stress distribution, but other part of the model have exactly 

the same micro-stress distribution. This indicates that stress control and strain control only affect top two layer micro-

stress distribution using this SVE cubic model i.e., the boundary condition only effects local to the boundary and the 

random nature of the microstructure tends to eliminate the effect of the boundary condition. 

 

 

5. Conclusions 
 

Statistical elastic micro-stress analysis of single-phase FCC polycrystalline metallic material has been conducted 

using 3-D SVE cubic model by Fortran-MSC Patran/Nastran software. In this paper, single-phase polycrystalline metallic 

material is modeled as an ensemble of grains, and all grains are assumed to have anisotropic mechanical properties with 

uniform random orientations. The response of the polycrystal is the aggregate response of the constituent grains. Grain 
size, shape and orientation have been considered to study the micro-stress distribution in the model. Micro-stress analysis 

is performed using the statistical volume element (SVE) model with 200 grains. The representative volume element 
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Figure 12 Grain maximum von Mises stress under stress control and strain 

control boundary condition 
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Figure 13 Grain center von Mises stress under stress control and strain control 

boundary condition 
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(RVE) size for only one grain has been found that at least it needs two layers of grains surrounding the specific grain. The 

micro-stress distribution difference for this SVE model under stress control and strain control has been investigated, and 

find that only top two layers of grain with different stress distribution, other part of the model have almost the same stress 

distribution.  
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