ICME to Quantify the Effect of Uncertainty in Microstructure on the Fatigue Performance of Additively Manufactured Parts

Michael Oja VEXTEC Corporation

VEXTĘC²

Acknowledgements

- Additional authors:
 - Robert Tryon, Robert McDaniels, Animesh Dey (VEXTEC)
 - Chad Duty, Andrew Chern (Univ. of Tennessee)
- Kishan Goel, Madan Kittur (NAVAIR TPOCs)
- Visit VEXTEC's exhibit booth in the Poster Hallway and pick up a Nashville-original GooGoo Cluster!

Objectives

Use Integrated Computational Materials Engineering (ICME) to:

- Link processing-to-microstructure, and microstructure-to-performance
- Link local properties to overall component durability
- Quantify effects of AM process variations on mechanical performance of AM-built parts
- Extend modeling of conventionally-processed materials to predict performance of AM-processed materials

AM Presents New Opportunities

- Conventional design based on a static materials library
 - Design is separated from material development
- AM requires integration of product design and material properties

AM: An Ideal Application for ICME

VPS-MICRO[®] – computational microstructural fatigue software

- Each element in a FE model can have a different distribution of microstructural properties
- Virtual fatigue analysis simulation grain → element → component
 - System reliability
- Proven technology on forgings, castings, weldments (2 decades)
- Now being validated on AM parts

Burst Test Prediction of AM Nickel Nozzles

C3-

120816

C3-

011217

Off-Nominal

B2

Off-Nominal

B3

Nickel Superalloy Nozzle

• SLM Mondaloy

zle	Unit	Identifier	Operating Pressure	Proof Pressure	Vextec Calculated Burst	Actual Burst	
	Nominal	C3- 11/28/16	6.5 KSI	7.8 KSI	>13 KSI	15.022KSI	C3-560 (DO NOMI
	Off-Nominal	C3- 11/14/16	6.5 KSI	7.8 KSI	11-13 KSI	12.218 KSI	

7.8 KSI

7.8 KSI

6.5 KSI

6.5 KSI

Off Nominal A Degrading

11-12 KSI

11-12 KSI

In

Process

10.555 KSI

VPS-MICRO accurately predicted burst test location & pressure for different AM process settings

0°

Nominal 1

Off Nomina

6

Durability Certification in Fatigue

NAVAIR-funded program to develop ICME-based certification of electron beam melted (EBM) Ti-6AI-4V alloy [STTR N16A-T004]

- Certification for cyclic load resistance is expensive
 - Long duration of each test
 - Large scatter in results requires many tests to achieve confidence
- VEXTEC used knowledge about forged / β-annealed Ti-6-4 to develop a certification model for AM Ti-6-4, and compared to physical test data¹
 - Explicitly modeled differences in microstructure, defects, and damage mechanisms

¹Gong, Haijun, "Generation and detection of defects in metallic parts fabricated by selective laser melting and electron beam melting and their effects on mechanical properties." (2013). Electronic Theses and Dissertations. Paper 515.

Influence of EBM Processing on Microstructure

	Relative Porosity	α Lath Size	Prior β Grain Size	Surface Roughness
Speed Function Index / Scan Speed	Ŧ	-	-	0*
Line Offset (mm)	+	_*	_*	_*
Max Beam Current (mA)	-	+	+*	0*
Focus Offset (mA)	-/+	+*	+*	-

*Trend not seen in literature Assume increasing the process parameter value only (all other variables remain constant)

VEXTĘC

Fatigue Behavior of Forged / β -Annealed Ti-6-4

- Majority of life spent in crack growth when damage initiates at a large defect
- Large variation in crack growth
 - Limited slip systems in basket-weave titanium alloys
 - Coarse microstructure

Park, Ji, et al. "Titanium 6AI-4V Durability Method Development and Test Verification Results" (2014). Presented at the Aircraft Structural Integrity Program (ASIP) annual conference.

9

VEXTĘ

10

Void

Microstructural Comparison (Forged vs. EBM)

ANUFACTURING

Microstructural Volume Element

- Microscale matrix material model
- Voids and NMIs

- EBM Ti-6-4 has similar morphology, but a smaller grain size •
- Used model previously-calibrated to forged Ti-6-4, to predict EBM Ti-6-4

Microstructural Comparison (EBM Directionality)

Horizontal Specimens

Build direction

- Slightly higher tensile strength due to absence of build defects
- Smooth fatigue fracture surface

Vertical Specimens

- Slightly lower tensile strength due to build defects
- Rough fatigue fracture surface

VEXTEC ICME Constitutive Equations for Damage Evolution

VPS-MICRO software uses proven equations for each damage stage

- Material property values and damage mechanisms from testing
- Stage transition rules from experimental observations

VEXTĘC²

ICME Computational Process Flow

13

VEXTĘC?

Material Property Comparison (Forged vs. EBM)

[†] Additional model parameters (not listed) were unchanged between forged & EBM conditions	Material Properties Influenced by Manufacturing Technique [†]		Ti-6Al-4V Forged + β-Annealed		Ti-6AI-4V EBM (Horizontal)		Ti-6AI-4V EBM (Vertical)	
	Description	Distribution	Mean Value	COV	Mean Value	COV	Mean Value	COV
Probabilistic	Grain size ^{††}	Lognormal	0.025 in	0.3	0.0034 in	0.3	0.0034 in	0.3
Probabilistic	Frictional strength	Weibull	113 ksi	0.3	83 ksi	0.3	83 ksi	0.3
^{††} "Grain size" refers to the microstructural feature of interest: the size of the g-	Grain boundary SIF	Deterministic	2.5 ksivin	N/A	3.0 ksivin	N/A	3.0 ksivin	N/A
lamellar colonies within prior β grains	Specific fracture energy	Deterministic	7500 lbs/in	N/A	7700 lbs/in	N/A	7700 lbs/in	N/A
Probabilistic	Defect size (population density)	Lognormal	None	N/A	None	N/A	0.004 (200/in ²)	0.3
	Asperity	Deterministic	0.01,0.1,1,1	N/A	None	N/A	0.01,0.5,1,1	N/A

Model Predictions for Horizontal Specimens

Used VPS-MICRO software with model for conventional Ti-6-4 updated with measured material properties from experimental tests

- 10 specimens simulated at each stress level (all complete < 1 hr.)
- Results show good comparison between actual and predicted fatigue lives

Model Predictions for Vertical Specimens

Experimentally observed mechanistic differences between Horizontal and Vertical specimens

- Defects are active damage sources in Vertical specimens
- Tortuous fracture surfaces of Vertical specimens (asperities)
- 10 specimens simulated at each stress level (all complete < 1 hr.)
- Good comparison between actual and predicted fatigue lives

17

Conclusions

- ICME was used to link processing-to-microstructure, and microstructure-to-performance
- Microstructural effects due to changes in AM processing characteristics were identified
- A probabilistic ICME fatigue model previously calibrated to conventionally processed Ti-6AI-4V was extended to predict fatigue of AM/EBM Ti-6AI-4V
- ICME software can decrease the time and resources needed to certify metal AM structural components exposed to fatigue (Benchmark 3)

