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Abstract 
A Monte Carlo analysis method combining the models of dislocation theory with random variable statistics is 

used to predict the fatigue response scatter due to the random nature of the physical microstructure. The 
microstructure is modeled using the appropriate statistical distributions for high strength materials typical of those 
used in propulsion structures. The method simulates crack growth through the random microstructure using the 
appropriate fracture mechanics processes. The method allows for three stages of damage accumulation and simulates 
the transition from one stage to the next using the proper mechanistic linkages. The method is general and considers 
the entire range of damage accumulation sequences; from crack nucleation of the initially unflawed structure to final 
fast fracture 

1 Introduction 

This paper gives an example of how probabilistic methods can be used to predict the variability expected in the 
fatigue test of simple laboratory specimens such as smooth round bars. The variability observed in laboratory 
experiments is discussed. The physical source of the variability is identified. Fracture mechanics based models that 
account for the physical mechanism occurring during fatigue are introduced. Using these models, the governing 
material parameters likely to have significant uncertainty are identified and the uncertainty is quantified. A Monte 
Carlo simulation routine is developed using the mechanistic model and the governing random variables to predict 
the scatter in the smooth bar response. For the purpose of this paper, fatigue is defined as the entire range of damage 
accumulation sequences; from crack nucleation of the initially unflawed bar to final fast fracture. 

2 Background 

2.1 Various Stages of Fatigue 
Current fatigue life prediction methods in metallic components consider three stages: crack initiation, long 

crack propagation and final fracture. Long crack propagation and final fracture are the stages of damage 
accumulation that are well characterized using linear elastic or elastic-plastic fracture mechanics. Crack initiation is 
the early stage of damage accumulation where small cracks (cracks with depths less than several grain diameters) 
have been observed to deviate significantly from predicted long crack fracture mechanics behavior [1]. The 
deviation is attributed to the heterogeneous media in which small cracks evolve [2

The crack initiation stage can be broken down into two phases: crack nucleation and small crack growth. Crack 
nucleation is the locally complex process of crack formation on the microstructural scale. Crack nucleation is 
characterized by smooth fracture surfaces at angles inclined to the loading direction. This type of failure is indicative 
of shear stress Mode II (sliding mode) fracture. Although loading has been shown to effect the nucleation size [

]. 

3,4], 
experimental evidence suggest that the nucleation size is on the order of the grain size [5,6,7

Small crack growth is characterized by fracture surface striations perpendicular to the loading direction. This 
type of failure is indicative of tensile stress Mode I (opening mode) fracture. The behavior of small cracks tends to 
transition to linear or elastic-plastic fracture mechanics behavior when the crack depth reaches about ten mean grain 
diameters [

].  

8]. Crack nucleation and small crack growth must be modeled separately because different mechanisms 
control each phase. The relative importance of the crack nucleation stage on overall fatigue life depends on several 
factors. Materials which exhibit a strong preference for planar slip show a strong correlation between the crack 
causing final fracture and the earliest nucleated cracks [9]. Materials which prefer cross slip showed almost no 
correlation between the crack causing final fracture and the earliest nucleated cracks [9]. The relative importance of 



2 

the crack nucleation may also depend on the loading condition. If the loading is relatively low (high cycle fatigue), 
the majority of life will be spent in the nucleation of a crack. If the loading is high (low cycle fatigue), cracks may 
nucleate early and spend the remainder of the fatigue life in the crack growth stages. However, high strength 
materials have been shown to spend the majority of fatigue life in the crack nucleation stage, even during low cycle 
fatigue [10

2.2 Scatter in Fatigue Life 

]. 

The coefficient of variation (COV) of fatigue life tests range widely depending on the material alloy and load 
level. Even for well controlled laboratory test of annealed smooth specimens at room temperature, the COV varies 
from less than 10% [9] to over 500 % [11

Sasaki et al. [9] compare the variation in crack nucleation life of mild steel, pure copper, and stainless steel. 
They found that the COV clearly depends on the stacking fault energy denoted by 

] for different steel alloys. This indicates that the fatigue reliability 
experienced by components in the field may be substantially attributed to the material behavior. 

γ . Relatively low COV was 
found for mild steel, which has high γ  (wavy slip), and high COV was found for stainless steel, which has low γ  
(planar slip). Copper, which has an intermediate γ , was found to have a value of the COV between mild and 
stainless steel. 

Figure 1 shows the relative scatter in the different stages of crack growth for sixteen mild steel specimens 
exposed to high cycle fatigue [12

Table 1 shows the scatter factors for a NiCrMoV steel 
turbine rotor shaft material data [

]. The specimens were shallow notched and tested in rotating bending. The cracks 
nucleated at a size roughly equal to the mean grain size (0.07 mm). The small crack regime for this data extends 
from the initiation event until the crack reaches about eight times the mean grain size (0.6 mm). The long crack 
growth regime extends from 0.6 mm to failure. Figure 1 illustrates the larger amount of scatter in the early stages of 
crack growth with relatively little scatter (similar slopes) in the large crack growth stage. The variation is attributed 

to the heterogeneous media in which small cracks evolve. 

13]. The specimens were 
shallow notched round bars tested in rotating bending low 
cycle fatigue. The scatter factors are for a 99.87 % (-3 σ) 
reliability at 90 % confidence level using the life reduction 
model found in Fu-Ze [14], which assumes a lognormal life 
distribution. The behavior in Figure 1 and Table 1 is 
observed for different stresses amplitudes and materials 
[9,12,15,16

Table 1: Scatter factors for stainless steel in low cycle 
fatigue. 

]. 

Failure definition Number of 
samples Mean life (cycles) Scatter factor -3 σ life (cycles)

Nucleation 36 26,700 44.2 604 
Small crack 36 52,400 15.5 3380 

Final fracture 14 82,400 2.78 29,600 

The values in Table 1 show the importance of material response scatter. The scatter factors are life reduction 
factors for material response scatter only. They do not account for variations in loading, geometry, environment, 
temperature or size effect. The potential for improved design through the reduction of material scatter is great. When 
you consider that fatigue is estimated to account for at least 90 % of all service failures due to mechanical causes 
[17

Limited experimental work has been performed with regard to the effect of microstructural variation on other 
aspects of material response. Gokhale and Rhimes [

], understanding the statistical aspects of fatigue becomes paramount. 

18] prepared pure aluminum to give several grain size 

Figure 1: Crack growth curves for mild steel 
emphasizing the large scatter in the early stages. 
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distributions with the same mean grain size but different variances. They found that the scatter in grain size played a 
primary role in controlling yield stress, ultimate tensile stress, reduction in area and the area under the stress-strain 
curve. The parameters were much more sensitive to changes in the grain size variance than to changes in the mean 
grain size. Their research emphasizes the importance of microstructural variation with regard to any type of plastic 
behavior which is likely to be important to crack initiation and growth kinetics. 

2.3 Probabilistic Micromechanics 
Most crack nucleation models are empirically based macrostructural models [19]. They reduce crack nucleation 

to simple parametric functions of macro-stress and macro-strain variables. As such, the macrostructural models 
assume the material to be homogeneous and isotropic. The models are necessarily approximate because they cannot 
represent the heterogeneous media in which the damage processes occur. In contrast to macrostructural models, 
micromechanical models establish material behavior based on the explicit response of the microelements, such as 
dislocations and slip planes. Micromechanics have successfully explained the qualitative behavior of crack 
initiation. However, a theoretical crack initiation model which explicitly relates the microstructure to the 
macroresponse has not been developed because too many complex micromechanical processes are operating 
simultaneously [20

Statistical concepts have been used to develop empirical fatigue life models in which the independent variable 
(applied stress or strain) is considered deterministic and the dependent variable (life) is considered random [

]. 

21

This study addresses the statistical aspects of fatigue using a fundamentally different approach. The fatigue 
mechanisms are considered and the independent variables, which include material variables that govern response, 
are recognized as random variables. The approach identifies the sources of uncertainty and quantitatively links the 
variation in the material microstructure to the scatter in the fatigue response. 

]. The 
models do not account for the mechanisms that regulate fatigue damage and thus, the source of the scatter is 
unknown and must be attributed to incomplete data and missing parameters. The models cannot be used to 
accurately describe materials and loading conditions that are not explicitly part of the data-based test program. 

The research is based on the concepts of probabilistic mesomechanics [22] which provides the relationships 
between the microstructural material properties and non-continuum mechanics [23

Mesomechanics also recognizes the multiple stages of fatigue damage accumulation such as crack nucleation, 
small crack growth and long crack growth. Each stage is driven by different mechanisms and must be distinctly 
modeled. The stages must be quantitatively linked because the crack grows successively from one stage to the next. 
In this research, a theoretical micromechanical model is used to determine the number of cycles necessary to 
nucleate a crack in the individual grains. A combination of models based on empirical observations and theoretical 
micromechanics are used to determine the number of cycles necessary to grow the cracks from nucleation to the 
long crack regime. An empirically based (Paris law) model is used to determine the number of cycles necessary for 
the crack to grow through the long crack regime to the critical crack size. Failure of the macrostructure is defined by 
the first crack to nucleate and grow beyond the critical crack size. The statistical distribution of fatigue life for the 
macrostructure is determined using Monte Carlo simulation methods. The probabilistic mesomechanical model 
provides a direct quantitative link between the variations in the material microstructure to the scatter in the fatigue 
behavior. 

]. In this research, the 
mesoelements are defined as the individual grains of a polycrystalline aggregate. Each grain is considered a single 
crystal with homogeneous (although not isotropic) properties. The properties are considered to vary from grain to 
grain. The macrostructure is modeled as an ensemble of grains. The material properties of the ensemble of grains are 
defined using the appropriate statistical distributions. Mesomechanical modeling is an approximation of the actual 
material because certain properties will vary within a grain. However, it is believed that mesomechanics is a better 
approximation of the true material characteristics than macromechanics. 

Many material and structural design factors influence component reliability in terms of the defined durability 
problems. From a material performance standpoint, many of these factors are at work in the durability “size effect”. 
The size effect was first reported by Peterson [24] when he noticed that the mean fatigue life and variation in fatigue 
life were a function of the stressed area. The size effect has a fundamental role in controlling reliability because 
damage accumulation starts on a small scale and grows through various characteristic sizes, each with its own 
geometric complexities, constitutive laws, and heterogeneities. Fatigue behavior cannot be fully understood and 
predicted without obtaining information about each of the characteristic sizes, or what can be called mesodomains 
[23]. Nested models can link each of the mesodomains to determine the response of the macrodomain [25

The concepts of mesomechanics can be used to explicitly examine each of the characteristic sizes or 
]. 
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mesodomains. For example, a fleet of simple polycrystalline metallic components may be divided into six 
mesodomains as shown in Table 2. At each level, heterogeneities can be introduced from various sources and fatigue 
damage can accumulate via various mechanisms. 

Table 2: Mesodomains of a mechanical component 

Mesodomain Sources of variation Damage accumulation 
mechanisms 

dislocation level vacancies, interstitials dislocation pile-up 

sub-grain level slip bands, micro-voids, second 
phase particles slip band decohesion 

grain level crystallographic orientation, 
twins, inclusions crack nucleation 

specimen level surface finish, cracks, notches small crack growth 

component level cracks, notches, processing, 
geometry, machining large crack growth 

fleet level heat treatment, service duty, 
applications 

NDE inspection screening, life 
distributions 

The true primary mesodomain is below the dislocation level. The most primitive variables controlling fatigue 
may be at the atomic level. Modeling at such levels is not yet possible and is not required for the purposes of the 
present study. The slip process, which takes place on slip steps typically 0.1 mµ  wide, is of continuum scale with 
respect to the atomic size of 0.5 nm [26

The specimen level is an artificial mesodomain because there are no specimens in the fleet. Specimens are 
generally prepared to limit the introduction of heterogeneities. However, the bulk of the information used in design 
is usually gathered from specimen testing, so it is important to understand the characteristics of this level. Specimen 
testing can identify scale effects, defect origins, and processing influences on crack initiation. 

]. The smallest practical mesodomain depends on the material, loading and 
available information gathering techniques. The research has focused on the use of slip band models from the sub-
grain mesodomain, together with probabilistic variables being defined at the grain size mesodomain. These models 
are used to predict behavior for the specimen mesodomain. 

A large component such as an aeroengine fan blade will have several mesodomains between the grain size and 
the component level. The airfoil and the dovetail would be two component—scale mesodomains. Properties such as 
the grain size, material properties, and surface finish are different in these two mesodomains. The delineation of the 
mesodomains is specific to the material, geometry, loading and failure mode. 

The overall fatigue response at the fleet level is predicted by nesting the individual mesoscale models. The 
lowest level model uses the appropriate mesoscale parameters to determine the initial state of the next level. This 
level uses the results from the previous level along with the appropriate parameters to determine the initial state of 
the next level and so on. Through the use of nested models, fleet reliability can be linked to the heterogeneities at 
each mesodomain. Additionally, by modeling each level of the fatigue process individually, and rigorously linking 
the levels, various size effects are included.  

3 Damage Accumulation Models 

3.1 Overview of a Probabilistic Microstructural Fatigue Model 
The probabilistic fatigue modeling algorithm discussed in this chapter concentrates on the regimes in which the 

effects of the local variation in the microstructure are assumed dominant. The purpose of the algorithm is to assess 
only the microstructural effects. Variations in the applied loading and global geometry are not considered. The 
fatigue process is divided into three phases. The first phase is the crack nucleation phase in which damage 
accumulates to form a crack in an initially uncracked structure. The second phase is the small crack growth phase in 
which the crack size is on the order of the microstructure. The third phase is the long crack growth phase in which 
the crack size is large compared to the microstructure. 

The algorithm uses microstructural models that predict crack nucleation life and crack nucleation size which 
have been proposed in the literature. These models predict damage accumulation through irreversible dislocation 
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pile-up at microstructural obstacles. Cracks nucleate when the critical strain energy is exceeded.  
Although the material fatigue response algorithm is able to model each of the crack nucleation mechanisms 

described above, of particular interest to initially undamaged components is the slip band cracking within the grain. 
Many of the high strength materials currently used in safety critical structures accumulate damage through the 
creation of persistent slip bands. The theory of continuously distributed dislocations is used to model the persistent 
slip band within a grain. Dislocations pile up at the grain boundaries with each load cycle. When the energy 
associated with the dislocation pile-up, exceed a critical value, a crack forms along the slip band the size of the 
metallic microstructural grain. 

The second phase is the small crack growth phase in which the crack size is on the order of the microstructure. 
The crack growth rate is modeled as a function of the crack tip opening displacement (CTOD). The theory of 
continuously distributed dislocations is used to model the CTOD. The plastic zone is modeled as dislocations 
distributed ahead of the crack tip. The tip of the plastic zone is either propagating freely within a grain or blocked at 
the grain boundary. The CTOD depended on the relative location of the crack tip and the plastic zone tip. The crack 
grows in the small crack growth phase until the plastic zone spanned many grains so that local microstructural 
variations have little effect. 

The third phase is the long crack growth phase. The crack growth rate is modeled using Paris law. The 
microstructural variations are not explicitly considered. All variation in long crack growth is model by allowing the 
Paris law coefficient to be a random variable. 

Fatigue test of an ensemble of smooth round bar (SRB) specimens is used to show the capabilities of the 
method. The overall fatigue response of the SRB is predicted by nesting the individual mesoscale models. The crack 
nucleation model uses the appropriate mesoscale parameters to determine the initial state of the small crack growth 
model. This model uses the results from the previous crack nucleation model along with the appropriate parameters 
to determine the initial state of the long crack growth model. Using nested models, specimen reliability can be 
linked to the heterogeneities at each mesodomain. Additionally, by modeling each level of the fatigue process 
individually, and rigorously linking the levels, various size effects are included.  

The local microstructural variables considered random in this chapter are: grain size, grain orientation, micro-
stress, and the frictional stress needed to move dislocations. The grain size statistical distribution is determined from 
data in the literature. The grain orientation statistical distribution is determined for both surface and interior grains 
using theoretical considerations. The micro-stress statistical distribution is determined from a Voronoi cell finite 
element model [27

3.2 Crack Nucleation  

]. The variables are common to both the crack nucleation and small crack growth models. The 
grain shape is assumed equiaxial and the grain orientation is untextured and described using the face-center-cubic 
slip system. The loading and material properties within a grain are homogeneous although not isotropic. The 
material properties vary from grain to grain. 

3.2.1 Micromechanics of Crack Nucleation 
Fatigue crack nucleation is a complex and obscure process. The mechanisms for crack nucleation change with 

material, loading, temperature and environment. One overriding observation is that cracks tend to nucleate near the 
free surface. For many loading conditions, the highest loads are at the surface. However, even when the nominal 
stress is constant throughout, cracks tend to nucleate at the surface because deformation of each grain is allowed to 
concentrate on a preferred crystallographic plane. In the interior, deformation on a single crystallographic plane is 
hampered by the constraints of the surrounding grains. 

Experimental evidence clearly shows that defects in the material can cause fatigue crack nucleation by acting as 
stress concentrations and the cracks tend to nucleate along the preferred slip plane [28]. Examples of defects include 
surface pores, ceramics inclusions, second phase particles and microcracks. The fatigue resistance of many alloys 
has been improved by decreasing the size and number of defects. However, slip band decohesion also causes crack 
nucleation even when no apparent defect is present. The surface grains must be favorably oriented for slip band 
decohesion to occur, but not all favorably oriented grains have cracks. Slip along preferred planes plays an important 
role in crack nucleation. When annealed metals are exposed to cyclic loading, they strain harden. Strain hardening is 
one of the earliest mechanical responses to fatigue. Initial hardening is rapid and controlled by multiplication of 
dislocations in the atomic lattice. When the material is first cycled, dislocations glide freely to accommodate large 
plastic strains. Eventually, the dislocations interact and start to create a substructure of pinned dislocations [29

The substructure consist of veins for low stain amplitude and cells for higher strain amplitudes [
]. 

30]. The veins 
and cell walls consist of high dislocation density while the volume between the veins and cell walls has a much 
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lower dislocation density. The dislocations can only glide freely in the volume of low density. As the substructure 
develops, hardening will result because the increased interaction of dislocations constrain their movement. If the 
cyclic strain amplitude is increased, the cell size decreases which reduces the volume between cells, and hardening 
continues. Fine slip lines appear on the surface as the dislocation density increases [31

The rate of hardening gradually decreases until the flow stress becomes constant. The dislocation substructure is 
saturated and can no longer accommodate strain. Saturation is accompanied by the formation of coarse slip bands 
which roughen the surface of the grain with extrusions and intrusions. If the surface is polished, small vacancy pits 
are found in the slip bands. If the specimen is again cycled, the same slip bands roughen the surface. These bands 
are referred to as persistent slip bands [31]. 

]. 

The persistent slip bands have a distinctive substructure of walls of high dislocation density [32]. The walls are 
perpendicular to the primary slip direction and stretch across the thickness of the band. The distance between the 
walls is fairly constant. This substructure is often referred to as a ladder structure [33

Slip band behavior is not well understood and many different theories exist to explain how the bands 
accommodate strain [32, 33, 

]. 

34, 35]. However, it is recognized that the strain is localized in the persistent slip bands 
and very little strain is accommodated by the volume of material between slip bands. Upon further cycling, cracks 
form in the persistent slip bands. The cracks are believed to be the combined result of vacancy creation, repulsive 
dislocation stresses and surface roughening stress concentrations. Experimental evidence show that if the strain 
amplitude is lower than the saturation point, the strain is accommodated by fine slip associated with pre-saturation 
dislocation substructure and no cracking takes place [36

There are two fundamentally different types of slip-band-induced crack nucleation. One is Forsyth's well known 
Stage I crack nucleation in which a very small crack (much smaller than the grains size) nucleates along the slip 
plane very early in life. A crack is evident from crack opening displacement when a static load is applied [1]. The 
size of the plastic zone is relatively small, being equal to or less than the crack size [

]. Thus, persistent slip bands are essential to fatigue damage 
and must be addressed by crack nucleation models. 

37]. The crack propagates in 
Mode II until it reaches an obstacle, often the grain boundary. This type of crack nucleation has been observed in 
age hardened aluminum [1] and alloy single crystals [31]. Elastic-plastic crack growth models have been successful 
in modeling the mean behavior of such alloys down to a very small crack size [38

The more prevalent though less recognized slip band induced crack nucleation is sudden crack nucleation. In 
sudden crack nucleation, a slip band which stretches across the grain forms very early in life but no crack is formed. 
The lack of a crack is evident from no crack opening displacement when a static load is applied [1]. The slip band is 
not associated with crack beneath the surface [35, 

]. 

39]. Upon continued cycling, the slip band is blocked by the grain 
boundary and does not grow in length. However, the depth and the width of the slip band increase slightly until 
suddenly a crack is form. This slip band crack nucleation behavior is observed in many alloys including steel, 
aluminum and brass [1, 12, 40

3.2.2 Micromechanical Crack Nucleation Models 

]. The crack nucleation model developed in this chapter addresses sudden crack 
nucleation.  

Models used to predict scatter in crack nucleation response must have two attributes. They must be quantitative 
with regards to the number of cycles needed to produce a crack to a specific size if they are to be used for life-time 
predictions. The models must also be able to address the microstructural parameters in order to provide a physical 
link between the microstructure and the fatigue behavior. Although the literature contains numerous expressions for 
modeling the propagation rate of fatigue cracks as discussed later, only a limited number of analytical crack 
nucleation models exist. Most all of these models use dislocation theory [41] to model fatigue damage accumulation 
as the build up of a continuous array of dislocations  [42

Microstructural models which predict crack nucleation life and crack nucleation size have been proposed 
independently by Tanaka and Mura [34] and Chang et al. [

]. 

43

Models are available to address a wide variety of crack nucleation mechanism including: 

]. Both of these models predict damage accumulation 
through irreversible dislocation pile-up at microstructural obstacles. Cracks nucleate when a critical strain energy is 
exceeded.  

• slip band cracking within a grain [34] 
• grain boundary cracking [34] 
• matrix/inclusion interface cracking [34] 
• cracks emanating from inclusions [34,43] 
• cracks emanating from notches [44

The models have been modified to account for partial reversibility and random load amplitudes[
] 

45]. The crack 
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nucleation models had to be modified by the authors to include the effects of additional random variables. 
The models are consistent with the Coffin-Manson relationship for fatigue crack initiation [34, 46

The crack nucleation model used in this study is based on one proposed by Tanaka and Mura [34] in which the 
forward and reverse plastic flow within the persistent slip band of a surface grain is related to the creation of 
dislocations of opposite signs on closely spaced planes. This model is applicable to metallic components for which 
crack nucleation takes place by transgranular shear stress fracture and is outlined below. 

], the Petch 
equation for the grain size dependency of the fatigue strength [34] and the Palmgren-Miner law of damage 
accumulation for variable amplitude loads. 

As a load greater than the local yield stress is applied to grain with diameter d, dislocations are generated and 
move along the slip plane as shown in Figure 2. The dislocations pile up at the grain boundary which acts as an 
obstacle to dislocation movement. The dislocation movement is assumed to be irreversible such that when the 
reverse load is applied, dislocations of the opposite sign pile up on a closely spaced plane. Since the residual load 
from the back stress of the positive dislocations act in the same direction as the reverse applied load, unloading will 

cause negative dislocation movement. During each of the subsequent load 
cycles, the number of dislocations monotonically increase. 

On the first loading, the equilibrium condition can be expressed as 
 ( )1 1 0D kτ τ+ − =  (1) 

where k is the frictional stress which must be overcome to move dislocations, 1τ  
is the applied shear stress ( 1τ must be greater than k for damage to accumulation 
to occur), and 1

Dτ  is the back stress caused by the dislocations. If the dislocation 
density ( )1D x  along the slip plane is assumed to be continuous [42] 

 ( )1
1

r
D

r

D x
A dx

x x
τ

−

′
′=

′−∫   

 ( )/ 2 1  for edge dislocations
/ 2             for screw dislocations 

A G
A G

π υ
π

= −

=
 

where r is the grain radius, G is the shear modulus and ν is Poisson's ratio. Substituting Eq. (2) into Eq. (1) creates a 
singular integral equation which is solved for ( )1D x using the inversion formula of Muskhelishvili [47

 

] for 
unbounded dislocation density at the grain boundary 

( ) ( )1
1 2 2

k x
D x

A r x

τ

π

−
=

−
 (3) 

The incremental increase of dislocation density ( )D x∆  with each load cycle is 

 ( ) ( )1
1 2 2

2k x
D x

A r x

τ

π

∆ −
=

−
 (4) 

The slip displacement ( )xφ due to the increment ( )D x∆  is 

 ( ) ( )
r

x

x D x dxφ = ∆∫  (5) 

The plastic strain increment γ∆  is  

 ( ) ( ) 22
2

r

r

k r
x dx

A
τ

γ φ
−

∆ −
∆ = =∫  (6) 

such that the constitutive equation is 

 
Figure 2: Slip band of width w 
interacting developing on grain 

of size d. 
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 ( ) 22
2

k r
A

τ
γ

−
=  (7) 

which describes the stress-strain hysteresis loop in Figure 3.  
During the first forward loading of stress 1τ , the material 

hardens for any stress above k. On reverse loading to 2τ , the path 
ABC is followed. On subsequent forward loading, the path CDA is 
followed. The amount of plastic strain increment is a linear 
function of ( )kτ − . The dislocation strain energy is the same for 
forward and reverse loading except the first loading. The 
incremental stored dislocation strain energy U∆ corresponds to 
the shaded area of Figure 3. 

 ( )2U kγ τ∆ = ∆ ∆ −  (8) 
The energy associated with the unshaded area of Figure 3 is the 
dissipated work against the frictional stress k. Crack nucleation 
takes place when the total stored energy after nN  cycles is equal 
to the fracture energy of the grain. 

 2n sN U rW∆ =  (9) 

 
( ) ( )2

4
2 1

s
n

GW
N

k dτ π ν
=

∆ − −
 (10) 

where d is the grain diameter and sW  is the specific fracture energy per unit area. 
The probabilistic mesomechanical fatigue model calculates the crack nucleation life using Eq. (10) in a slightly 

modified form. The modification is that τ∆  is replaced with / Mσ∆  where σ∆  is the applied axial stress and M is 
the grain orientation factor. 

The model has several assumptions and limitations. 
1. The grain is homogeneous. The dislocations are free to move to the grain boundaries i.e., no subgrain 

structure exists to pin or disrupt dislocation movement. Although the grain is homogeneous it is not 
isotropic. 

2. Damage accumulates on a single planar slip system. In general, grains within a polycrystalline aggregate 
are not free to deform but are constrained by neighboring grains. Crack nucleation takes place on the 
surface grains which are not as constrained as grains embedded in the interior. Surface grain are able to 
accommodate more strain on the primary slip system [48

3. The crack nucleation size is equal to the grain size. Although loading has been shown to effect the 
nucleation size (the crack size at Mode II to Mode I transition) [3, 4], experimental evidence suggest that 
the nucleation size is on the order of the grain size [5, 6, 7]. 

]. The model can only be directly used on alloys 
that show planar slip. 

4. The dislocation movement is irreversible and dipoles pile-up monotonically at the grain boundaries. It is 
reasonable to expect some of the dislocations to move back into the interior of the grain upon reverse 
loading or be annihilated by back stresses. Theoretical investigations on how to account for the partial 
reversibility of slip band formation have been inconclusive [45, 49, 50

5. The number of cycles to saturation are negligible. This assumption is reasonable for many materials under 
certain loading conditions [7, 31]. 

]. However, there is experimental 
evidence that this reverse movement is small [34]. 

Equation (10) is necessarily a simplification of the complex phenomenon of slip band cracking. It does not 
directly address the effect of vacancy creation or the stress concentration of the surface roughening. However, the 
model is attractive because the fatigue life is inversely proportional to the square of the plastic strain amplitude 
which is in agreement with the Coffin-Manson empirical equation for fatigue. Equation (10) can be rewritten as 

 
( )

1
12
24

2
1

s

n

GW
k d

N
τ

π ν
− 

∆ = +   − 
 (11) 

 
Figure 3: Stress-strain hysteresis loop. 
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which is in the form of the Hall-Petch equation for the dependence of fatigue strength on grain size. 

3.3 Microstructurally Small Crack Growth 
3.3.1 Micromechanics of Small Crack Growth 

The experimentally observable parameter that has been correlated to the varying small crack growth rate is the 
crack opening displacement (COD) [37] 

 ( )nda C COD
dN

′′= ∆   (12) 

where a is the crack length, N is the number of cycles, C' and n' are empirical constants based on material testing. 
The COD is measure of the amount of damage associated with the crack tip. The larger the COD the higher the 
crack growth rate. This phenomenon was first observed by Laird and Smith [51] and has been well established in 
long crack growth [52, 53

 

]. The exponent n' has been found to have a value near unity when the COD is replaced by 
crack tip opening displacement (CTOD) 

t
da C
dN

φ′= ∆  (13) 

where the CTOD, denoted by φt is measured at the location of crack extension for the previous cycle. The direct 
proportionality of Eq (13) has been observed in small crack growth of aluminum, nickel and titanium alloys [54]. 
Equation (13) has also been shown to correlate the behavior between small and long crack growth [55]. Nisitani and 
Takao [1] showed that small crack arrest could be associated with no CTOD. Tanaka et al. [56

Determining C' for small crack growth has been performed through direct microscopic observations [1]. 
However, there has been limited success in using ∆K or ∆J data to determine C'. 

] showed that 
regressing data to Eq (13) showed much less scatter than exponential models based on ∆K or ∆J. Also, developing 
models for three different materials; copper, mild steel and stainless steel, produced very similar values for C' and n'. 
(The exponent n' was not unity because the COD measurements were made on the specimen surface at the center of 
the crack.) It appears as though the relationship between da/dN and ∆φt is more of an intrinsic material behavior than 
models based on ∆K or ∆J. 

CTOD can be shown to be related to the J integral through  

 
0

t
Jφ α
σ

=  (14) 

where σ0 is the bulk yield strength and α is nearly unity [57

 

]. Assuming elastic perfectly plastic behavior, CTOD 
can be related to K through  

2

0

2
t

Kφ
πσ υ

=  (15) 

where ν is Poisson's ratio. Combining Eqs. (13) and (15) 

 
2

02
da C K
dN πσ υ

′∆=  (16) 

which is the form of a second-order Paris equation. Determining C' using da/dN vs. ∆K data is straight forward for 
alloys that are governed by a second-order Paris relationship. Donahue et al. [58

It is interesting to note that McEvely [

] have compiled an extensive list of 
data that fit a second-order Paris equation. They find a C' value of about 0.1 fits most of the data. However, in 
general the Paris exponent is not expected to be 2.  

59] presents data form several sources which shows that a well defined 
region of constant slope is seldom found in the Paris fit. The slope was found to vary with ∆K and have a value of 2 
at low ∆K (the region of interest in the present study) and increase at higher ∆K. Also, there has been some success 
[60

 

] with correlating data to  
2
eff

da C K
dN

′′= ∆  (17) 

where ∆Keff  is the effective ∆K which is the applied ∆K minus the ∆K when the crack first opens. However, the 
measurement of ∆Keff  still requires direct observations at the crack tip. The relationship in Eq.(13) is assumed to be 
valid and will be used in the present study. 
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3.3.2 Small Crack Growth Models 
Two basic approaches have been used to model small crack growth behavior: modify a continuum mechanics 

based stress intensity factor, K, to account for the microstructural heterogeneity or, explicitly model the damage 
ahead of the crack tip using dislocation theory. Hobson [61] presented a simple continuum based model in which the 
crack growth rate is related to the distance between the crack tip and the nearest grain boundary. All of the model 
parameters are determined by fitting the model to experimental data. Chan and Lankford [37] modifies K to account 
for grain size and orientation using a simple analytical approach. Chan and Lankford [62

Gerberich and Moody [

] uses a more rigorous 
analytical approach to modify K for microstructural effects and large scale yielding. They introduce the concept of 
microstructural dissimilitude which accounts for the fact that small cracks actually lie in relatively few grains. 
Similitude can be assumed when the crack front interrogates enough grains such that the material properties 
averaged along the crack front have the same value as the bulk material properties. When the crack front interrogates 
relatively few grains, the average material properties at the crack front can vary significantly from the bulk 
properties, hence, microstructural dissimilitude. The number of grains interrogated by the crack front necessary to 
assume similitude depends on the amount of scatter in the local material properties. Also, by using an equivalent 
properties model that effectively averages the microstructural environment interrogated by the two dimensional 
crack front, Chan and Lankford [37] were able to reduce small crack growth to a one dimensional problem. 

63

Bilby and Eshelby [42] described the damage ahead of the crack tip using the theory of continuous dislocations. 
The models are equivalent to the Dugdale [

] used a modified continuum approach to address the semi-cohesive zone associated 
with selective cleavage in the microstructure at the crack tip for Ti-6Al-4V. Using this model, they were able to 
predict the mean grain size effect on threshold for titanium alloys. 

64] model found by a different method. Weertman [65] used the model 
of Bilby et al. [66] to develop a fatigue crack growth law and later used dislocation theory to developed a K for short 
cracks [67

Several researches have extended Bilby's model to account for microstructural effects. Taira et al. [
].  

68] obtained 
a model for a crack tip slip band blocked by a grain boundary. Tanaka et al. [69] extended Taira's model to slip band 
propagation through grain boundaries. The CTOD predicted by the model was found to be equivalent to that 
predicted by both Morris et al. [70] and de los Rios et al. [71]. Navarro et al. [72

Many statistical and probabilistic crack growth models can be found in the literature. The Markov based models 
[

] used an equivalent model to 
Tanaka's to describe small and short crack growth. The models predicted the bounds on the variation in small crack 
growth.  

73] describe the crack growth rate scatter as a process in which the amount of crack extension for each cycle is a 
random function. The Paris-based models describe the crack growth rate scatter by allowing the material property 
parameters to be random [74

Limited work has been reported on models which directly addresses the statistical aspects of small crack 
growth. Morris et al. [

]. A common feature of these models is that the random nature of the crack growth is 
not related to microstructural variables. Thus, these models are not useful in understanding small crack growth 
behavior. 

75

3.3.3 A Model Based on Continuously Distributed Dislocations 

] used Monte Carlo simulation to model the crack initiation behavior of aluminum smooth 
round bars. They used the crack nucleation model of Chang et al. [43] and a modified, continuum-based-K, small 
crack growth model. The random variables included crystallographic orientation, grain diameter, inclusion diameter, 
and an experimentally determined material parameter associated with the fracture strength of the inclusion. The 
statistical distributions of the random variables were not discussed. The predicted results compared favorably to the 
experimental observations. Tanaka et al. [56] used Monte Carlo simulation to predict the general behavior of small 
crack growth. They used the small crack growth model of Tanaka et al. [69]. The random variables included grain 
size, grain frictional stress, and an independent grain boundary strength. A two-parameter Weibull distribution was 
assumed for all of the random variables. They extended the model to include two-phase materials. Trends predicted 
by the model compared favorably with general trends observed in small crack growth behavior. 

The model developed in the present study follows the approach used by Tanaka et al. [69]. The approach is 
outlined below for Mode II (sliding) crack growth. The solution for Mode I (tensile) crack growth is obtained 
through the simple transformations discussed at the end of the section. 

Assume a crack has length a and the crack tip lies within a grain as shown in Figure 4. As load is applied, 
dislocations are emitted from the crack tip creating a slip band with dislocation density (D (x)>0) as represented by 
the length w in Figure 4. For low stress (where the applied stress is less than the stress needed to move dislocations) 
and the slip band tip far from the gain boundary (c<d). A condition called the equilibrium slip band exist. 
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The solution for the equilibrium slip band was obtained by Bilby et al. [66]. 
The equilibrium condition can be expressed as 

 

( )

0

0

1

0

/ 2 (1 )   for edge dislocations
/ 2              for screw dislocations

           
   

D

cD

c

D x
A dx

x x
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−

+ =
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′=
′−
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= 


<
=  − < <

∫
 (18) 

where τ is the resolved applied shear stress, τD is the back stress caused by the 
dislocations, G is the shear modulus, and k1 is the friction stress (which must be 

overcome to move dislocations) of the grain in which the crack tip and slip band lie. The size of the slip band w is 
determined from the condition of vanishing dislocation density at the slip band tip. 

 w c a= −  (19) 

 
1

cos
2

a
c k

πτ 
=  

 
 (20) 

The dislocation density D(x) is obtained by solving the singular integral Eq. (18) using the inversion formula of 
Muskhelishvili [47] for unbounded dislocation density at the crack tip. 

 

1
2

2 2 2 2

2 2 2 2

( ) ( ; , )

( ; , ) ln

kD x f x c a
A

x c a a c xf x c a
x c a a c x

π
=

− + −
=

− − −

 (21) 

The crack tip sliding displacement (CTSD) is 

 

1
2

1
2

1

2
ln

2
ln sec

2

t
k a c

aA
k a

kA

φ
π

πτ
π

=

  
=   

   

 (22) 

As the crack grows, the tip of the slip band will eventually be blocked at the grain boundary. This condition is called 
the blocked slip band. 

The solution for the blocked slip band was obtained by Taira et al. [68]. The size of the slip band is simply  

 
w c a
c L
= −
=

 (23) 

The dislocation density D(x) is obtained by solving the singular integral Eq. (18) using the inversion formula of 
Muskhelishvili [47]  for unbounded dislocation density at the crack tip and the slip band tip. 

 

1
22 2

1

( ) ( ; , )

2
1 arccos

kxD x f x c a
A Ac x

k a
c

βτ
π π

β
πτ

= +
−

= −

 (24) 

The microscopic stress intensity factor Km at the tip of the slip band is similar to the crack tip stress intensity factor 
and is defined as 

 
2 lim ( )m x c

K A c xD x

c

π π

βτ π
→
 = − 

=
 (25) 

The CTSD is 

 2 2 1
2

2
lnt

k a cc x
A aA

βτφ
π π

= − +  (26) 

 
Figure 4: Crack tip in a grain. 
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As the crack grows, Km increases. For the crack to overcome the grain boundary obstacle and propagate into the 
subsequent grain, Km must exceed the critical microscopic stress intensity factor Kmc provided by the grain boundary. 
If as a c→ , Km does not exceed Kmc, then the CTSD 0→  and the crack growth arrest. If Km exceeds Kmc, the slip 
band tip propagates into the next grain and a condition called the propagating slip band exist. 

The solution for the propagated slip band was obtained by Tanaka et al. [69]. The equilibrium condition is the 
same as Eq.(18) except 

 0
1

2

           
   
   

x a
k a x L
k L x c

τ
τ τ

τ

<
= − < <
 − < <

 

where k2 is the frictional stress in the second grain. The size of the slip band zone is determined from the condition 
of vanishing dislocation density at the slip band tip. 

 2

1 1
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2
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 (27) 

The dislocation density and CTSD are determined in a similar manner as before. 
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(28) 

Tanaka et al. [56] solve for the case in which the slip band extends over several grains as shown in Figure 5. If the 
crack tip is in the jth grain and the slip band is in the nth grain, the equilibrium condition is the same as Eq.(18) 
except 

 10

2 1
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The size of the slip band zone can be found from 
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The CTSD is given by 
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For the crack tip in the jth  grain and the slip band blocked in 
the nth  grain, the size of the slip band zone is 

 nw L a= −  (31) 
The CTSD is given by 

 
Figure 5: Crack tip slip band in multiple grains. 
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 (32) 

The microscopic stress intensity factor is 
 
 mK cβτ π=  (33) 

The above model allows for grain to grain variation in grain size and frictional stress. 
In the present study, the Tanaka et al. [69] model is extended to include the variation in the microstress and the 

grain orientation by allowing grain to grain variation in the applied resolved shear stress τ. 
Consider a crack with the crack tip in the jth grain and the slip band tip in the nth  grain. The equilibrium 

condition is the same as Eq.(18) except 

 0
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For the propagated slip band, the size of the slip band zone can be found from  
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The CTSD is given by 
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For the blocked slip band, the size of the slip band zone is 
 nw L a= −  (36) 

The CTSD is given by 
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 (37) 

The microscopic stress intensity factor is 
 mK cβτ π=  (38) 
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The solution for mode I loading is easily obtained through the following substitutions: 

CTSD CTOD
cτ →

→

3.4 Long Crack Growth 
The linear elastic crack growth is modeled using the Paris law representation of a surface crack in a semi infinite 
body subjected to a constant stress cycle. 

n

xx

da C K
dN

K s aβ

= ∆

∆ = ∆
(39) 

where a is the crack length, N is cycles, K∆  is the stress intensity factor, xxs∆  is the stress range, β  is the geometry 

constant ( )1.12 π , and C and n are material properties.

Expanding K∆ and integrating both sides 

( ) 2
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g f
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nN an
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where, gN  is the number of cycles needed for the crack to grow to failure, ia  is the initial crack size and fa  is the 
failure crack size. 

If 2n >  and i fa a , then 
1 1

2 2
n n

i fa a
− −

 and Eq. (41) can be written as 
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 (42) 

4 Estimate of Random Variable Statistics 

The variables in the damage accumulation models that are considered random in the probabilistic 
microstructural fatigue algorithm are: 

• Grain Size
• Surface Grain Orientation
• Interior Grain Orientation
• Frictional Shear Stress
• Paris Law Coefficient

The mean values of the random variables such as grain size and frictional strength can vary significantly with
heat treatment and other processes. The mean values can often be easily determined from the information 
traditionally reported in the literature. However, information needed to determine the statistical variation and the 
distributions types of the random variables is usually not reported. Nor is this information gathered during routine 
material characterizations performed by the aerospace industries. Luckily, specific studies to gather the needed 
information have been performed. These studies are used to estimate the random variables for the Phase I effort and 
are discussed below.  

4.1 Grain Size 
Empirical observations have indicated that the scatter in grain size for natural grain growth i.e., cast 

polycrystalline structures, is insensitive to material. This has been observed in pure metals, complex alloys, and 
inorganic ceramics [76]. This phenomenon has been attributed to the well behaved kinetics that determines natural 

>><<



 

 

15 

 

grain growth. 
Kurtz and Carpay [77

Kumar et al. [

] performed extensive grain volume 
measurements on Ni-Zn ferrites by way of planar sectioning, 
and describe the grain size by the equivalent spherical volume 
diameter. They determined the grain size distribution for 7 
different mean grain size microstructures measuring several 
thousand grains for each microstructure. They found the COV 
to vary between 0.3 and 0.4. The COV was independent of 
mean grain size. The distribution was accurately described by a 
lognormal distribution with the maximum to mean grain size 
ratio of about 2.7. 

78] investigated the grain size distribution 
using Monte Carlo techniques and a Voronoi tessellation 
technique, which closely model the grain topography of 
polycrystals. They found a COV of about 0.4. The lognormal 
distribution was a good fit up to about 5000 grains. Simulating 

greater than 100,000 grains, they found the gamma distribution to be a best fit. The gamma distribution may well be 
an artifact of the modeling technique and not intrinsic to the grain size distribution. Voronoi tessellation uses the 
Poisson process to generate the grain geometry and the gamma distribution is directly related to the Poisson process 
[79

The bulk of the grains measured in the above research were interior grains. A distinction must be made between 
the size of the surface grains and those in the interior. Although the surface grains may account for only a small 
fraction of the total grains within a component, understanding the properties of the surface grains is paramount 
because they play an important role in crack nucleation and small crack growth.  

]. In the present study, a lognormal distribution with a COV of 0.4 as shown in Figure 6 will be assumed. 

The surface effectively slices each grain in a random manner such that 
 cossl d θ=  (43) 

where l  is the surface length, sd is the grain diameter, and θ  is the random 
angle of incidence as shown in Figure 7. For an arbitrary cut through the grain, 
θ  is uniformly distributed between 0 and / 2π . The distribution of sd  can be 
determined from 

 cos
2sl d uπ =  

 
 (44) 

where sd  is lognormally distributed as shown in Figure 6 and u is the standard 
uniform random variable.  

Monte Carlo 
simulation was used to 
evaluate the distribution of 

sd  as shown in Figure 8. 
Comparing Figure 8 to 
Figure 6 shows that the 

average diameter of the surface grains is smaller than the 
interior grains. The increase width of the surface grain 
distribution indicates that the scatter in the surface grains 
diameter is larger than the interior grains. 

4.2 Grain Orientation 
In metallic structures, slip can occur on many planes in 

several directions. All orientations for cubic structures can be 
defined within the standard stereographic triangle [80

The orientation dependence of the reciprocal Schmid factor 
is shown in Figure 9. Figure 9 represents axially loaded grains 
that are free to deform such that slip occurs on a single plane. 

]. 

 
Figure 6: Grain diameter distribution. 

 
Figure 7: Line cutting across the 

grain. 

 
Figure 8: Surface grain size distribution. 
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However, grains within a polycrystalline aggregate are not free to 
deform but are constrained by neighboring grains.  

Taylor [81] determined the equivalent to the reciprocal Schmid 
factor, M, for axisymmetric flow in a face-centered cubic polycrystal. 
He assumed the frictional stress was the same for each slip system. He 
also assumed that each grain is acted upon by the same applied strain 
as the macroscopic strain. Taylor assumed the active slip systems are 
those for which the sum of the shear strains is a minimum. Bishop and 
Hill [82] later showed that the Taylor analysis is equivalent to a 
maximum work principle. This quantity is referred to as the Taylor 
factor. Chin and Mammel [83

Crack nucleation takes place on the surface grains. It is difficult to 
determine M for the surface grains which are not as constrained as 
grains embedded in the interior. Surface grains are able to 
accommodate more strain on the primary slip system. Although slip 
band formation and crack nucleation on secondary planes is not 

uncommon, experimental evidence shows that cracks tend to nucleate on the primary slip plane [

] developed a computer model based on 
the Taylor analysis and found the Taylor factor for slip on other 
orientations in cubic polycrystals.  

84

The orientations of the grains of an untextured polycrystalline material 
can be expressed as a uniform distribution of points within the stereographic 
triangle. To determine the statistical distribution of the Schmid factor for the 
randomly oriented grains, response surface was generated to approximate the 
Schmid factor within the stereographic triangles of Figure 10. A Monte 
Carlo simulation was used to generated points uniformly throughout the 
stereographic triangle as shown in Figure 10. (A similar technique has since 
been published by Ono et al. [

]. In reality, the 
deformation of surface grains is somewhere between free deformation and fully constrained. The reciprocal Schmid 
factor is used to describe the surface grains and the Taylor factor is used to describe the interior grains in the present 
study. 

85]). The response surface used to determine 
the Schmid factor for each of these points and the scatter among the Schmid 
factor is determined. The probability density function (PDF) of M is shown 
in Figure 11. The mean value of the distribution is 2.21 which is in 
agreement with other analytical findings [86]. The predicted PMF of M 
compares favorably to the experimentally determined value for 203 surface 
grains of an untextured pure iron [87

Using the same Monte Carlo technique, the PDF of the Taylor factor for an untextured polycrystal are shown in 
Figure 12. The mean value of the distribution is 3.07 which is in agreement with analytical and experimental 

findings [

] as shown in Figure 11. 

88]. The predicted PDF of M determined in the 
present study compares favorably to the analytical results of 
Sun et al. [89

4.3 Frictional Shear Stress 

]. They determined the PDF of the Taylor factor 
using the computer solution of Chin and Mammel [83] and 
considering all possible crystallographic orientations. 

The frictional stress is the stress that must be overcome 
for dislocations to move within a grain. The frictional stress 
can be thought of as the local yield stress. Because of the 
crystallographic orientation of the grain, yielding takes place 
on well defined planes (in the low Γ  planar slip alloys). 
Experimental observations have shown that the frictional 
stress is nearly uniform across the grain [90

There is little direct data available in the literature on the 
statistical distribution of the frictional stress. A rigorous 

].  

 
Figure 9: Orientation dependence of 

reciprocal Schmid factor. 

 
Figure 10: Uniform distribution of 

points throughout the 
stereographic triangle. 

 
Figure 11: Probability density function of the 

reciprocal Schmid factor. 
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numerical determination of the grain-to-grain scatter in 
frictional stress has not been made. However, empirical 
observations provide some insight into the behavior of the 
scatter. 

Taira et al. [3] experimentally observed the minimum 
cyclic stress for which slip bands formed in three different mean 
grain size microstructures of low-carbon steel. The applied 
stress was below the fatigue limit and slip bands formed in very 
few grains. They found that the minimum frictional stress is 
independent of mean grain size. The minimum frictional stress 
was nearly equal to the frictional stress predicted by the Petch 
relationship for the fatigue limit, expressed as 

 m
fl fl

K
k

d
σ = +  (45) 

where flσ  is the fatigue limit, flk  is the frictional stress of the 
grains participating in fatigue and mK  is the microscopic stress 

intensity factor. 
Taira et al. [3] used the Petch relationship for flow stress to determine the frictional stress for applied loads up 

to 5 % plastic strain. As the load increased, more and more grains produced slip bands. An indication of the scatter 
can be made by comparing the frictional stress determined at high applied load to the frictional stress at low applied 
load. At high applied load, many grains produce slip bands and this frictional stress may be thought of as the 
frictional stress of the nominal grain. At low applied load, only a few grains produce slip bands and this frictional 
stress may be thought of as the frictional stress of the weakest grain. 

This method is not rigorous because the variation in the microstress is not taken into account. In addition, it is 
difficult to determine the shape of the distribution. In the present study a two parameter Weibull distribution is 
assumed and fitted to the data in Taira et al. [3]. The parameters of the Weibull distribution are determined by taking 
the frictional stress determined from the 5% plastic strain test, 0.5 340k MPa= ,to be the frictional stress of the 50 
percentile grain and the frictional stress from the fatigue limit test , 110flk MPa= , is taken to be the frictional stress 
of the 1 percentile grain. This gives a normalized Weibull distribution with a shape factor 3.7kβ =  and a 
characteristic value 1.12kη =  that yields a mean value of 1 and a COV of 0.3. Tanaka et al. [56] indicate that a two 
parameter Weibull distribution with COV between 0.3 and 0.7 can be used to describe the frictional stress. 

4.3.1 Applied Micro-Stress 
Because each grain acts as an anisotropic single crystal, the actual loading on an individual grain is caused by 

the deformation of the surrounding grains, which are in turn loaded by the deformations of each of their surrounding 
grains. Therefore, the micro-stress distribution is a function of the anisotropic deformation of all on the grains that 
compose the structure.  

Barenblatt [91] proposed a theoretical model to describe the micro-stress field. Many simplifying assumptions 
were necessary to make the model tractable. Zhao and Tryon [92

In this paper the micro-stress will be assumed to have a normal distribution with a mean value equal to the 
applied load 

] investigated the micro-stress field for a single 
phase nickel alloy using finite elements and Voronoi tessellation to produce a model that closely approximates the 
microstructure. They modeled a statistical volume element with 200 grains. Each grain was modeled as an 
anisotropic single crystal with several hundred finite elements per grain. An elastic analysis was performed in which 
a uniaxial macroscopic load was applied. The von Mises stress at the grain interiors could be described by a normal 
distribution with a mean equal to the applied macroscopic stress and a COV of 0.25. The stress distribution of the 
surface grains was found to be the same as the interior grains. The COV was a function of the elastic anisotropy of 
the material. 

xxs  and a COV of 0.25. 

5 Monte Carlo Simulation of Each Stage of Damage Accumulation 

The Monte Carlo simulation of the fatigue damage accumulation is used to determine the probability that a 

 
Figure 12: Probability density function of the 

Taylor factor. 
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component will fail at a given number of cycles. The component to be modeled is a smooth round bar subjected to 
constant cyclic load amplitude. The global loading is assumed to be uniform throughout the gage section. A single 
RVE is also assumed to be valid throughout the gage section. The material is assumed to be a single phase 
polycrystal such as a nickel superalloy or high strength steel. This analysis simulates an empirical fatigue 
characterization test in which specimens are cycled to failure and the number of cycles at failure is recorded. The 
Monte Carlo simulation produced the same data. A bar is chosen (simulated) and cycled to failure. The number of 
cycles at failure are recorded. 

The basic low of the simulation is as follows 
1. A bar is chosen and the grains of the bar are generated using the statistical distributions described above. 

Each grain has a distinct size, orientation, frictional strength and microstress. 
2. A crack is nucleated in a surface grain and the cycles to failure are found using the model described earlier. 
3. Each crack then grows through the microstructure via the small and then long crack growth models 

described earlier.  
4. Another grain is chosen and Steps 2 and 3 are repeated.  
5. Step 4 is repeated multiple times until all surface grains are considered. However, step 3 in not repeated for 

all of the surface grains. A method of choosing only the grains that initiate a crack that is likely to lead to 
failure is employed. 

6. The life of the component is set equal to the minimum life of all of the cracks. 
The details of the simulation are described below. 

5.1 Crack Nucleation 
A surface grain is simulated by generating grain diameter, d, the applied microstress, σ, the frictional stress 

needed to move dislocations, k, and the Schmid grain orientation factor, Ms from the appropriate distributions 
shown in Table 3 which are typical values for a high strength single phase alloy. These input values are the same as 
were used in earlier studies by the author. Thus, the results of the Monte Carlo FORTRAN software can be 
compared with the results of earlier studies. The microscopic stress intensity factor Km is determined according to 
Eq. (25). If Km is less than the critical stress intensity factor needed to overcome the grain boundary, Kmc , then the 
crack arrests at the grain boundary. The next surface grain is generated by repeating the process. If Km is greater than 
Kmc , the number of cycles needed for crack nucleation is determined from one of the models presented in Section 
3.2 and the crack will continue into the small crack phase. 

Table 3: Input to the Monte Carlo Simulation 

Variable Description Distribution 
Type 

Distribution 
Parameters Average COV 

C Paris Law Coefficient Lognormal λ=-0.034 ζ=0.30 
94.4X10 MPa m−

 0.30 
C' CTOD Law Coefficient Deterministic N/A 0.10 N/A 
d Grain diameter Lognormal λ=-0.076 ζ=0.39 55.8 mµ  0.40 
da Small Crack Growth Interval Deterministic N/A 0.5 N/A 
G Bulk Shear Modulus Deterministic N/A 376X10 MPa−  N/A 
k  Frictional Strength Weibull η=1.12 ζ=3.7 69MPa  0.30 

crit

MK  Critical Microstructural Stress 
Intensity Factor Deterministic N/A 769MPa m  N/A 

SM  Schmid Orientation Factor Curve Fit  2.21 0.08 

TM  Taylor Orientation Factor Curve Fit  3.07 0.13 
n Paris Law Exponent Deterministic N/A 3 N/A 

SW  Specific Fracture Energy Deterministic N/A 440 /kN m  N/A 
ν Poisson’s Ratio Deterministic N/A 0.3 N/A 
σ Applied Micro-stress Normal µ=1 σ=0.3 Variable* 0.30 
*Note: The stress level of interest is a user input. 
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5.2 Small Crack Growth 
In the small crack phase, the microstructure 

surrounding the crack nucleating grain is simulated by 
considering a crack nucleating at X0 in Figure 13. Zone 
1, directly in front of the crack, is simulated first. The 
properties d, σ,  k, and  Ms of grain 11

sg  are generated 
using the appropriate distributions. The grain is a 
surface grain, therefore the Schmid factor orientation is 
assumed. The arc length larc1 is determined by  

 ( )0 11
1 0 112 2 2 4

s
s

arc
L dl L dπ π 

= + = + 
 

 (46) 

If 11
sd > larc1 then the grain fills the zone and 11

sd  is set 
equal to larc1. The properties of zone 1 are those 
generated for 11

sg . 
If 11

sd < larc1 then the grain does not fill the space. A gap 
remains of size 

 1 11
s

arcgap l d= −  (47) 
The other surface grain 12

sg  in zone 1 (see Figure 13B) is generated with the appropriate properties. The size of the 
grain 12

sd  is compared with the gap. 
If 12

sd > gap then the grain fills the gap and 12
sd  is set equal to the gap. The effective properties of the zone 1 are 

calculated as a weighted average with respect to the grain volume. 
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∑
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where nP  is the property or interest (grain orientation, 
microstructural stress, or fictional strength). If 12

sd < gap  then larc1 
is recalculated based on the average diameter of the two grains 
such that 

 ( )11 12
1 0 0 14 2 4

s s
s

arc avg
d dl L L dπ π +

= + = + 
 

 (49) 

A gap remains of size 
 2

1 11 12
s

arcgap l d d= − −  (50) 
An interior grain is now generated with the appropriate 

properties. The Taylor analysis is used for the orientation factor. 
If the grain fills the gap, then the grain size is set equal to the gap 
and the effective zone properties are calculated. If the grain does 
not fill the gap, then the arc length and the gap are recalculated 
and grains are generated until the gap is filled. The effective 
properties of the subsequent zones are generated using the same 
technique. The simulated microstructure can be represented by 
Figure 14. 

Zones are generated until the effective material properties are 
within 10%±  of the average material properties for three 
successive zones. Thus, the microstructure is generated until 
microstructural similitude is achieved. The number of zones and 
the total area of the zones are random and depend on the variation 

 
Figure 13: Representation of the simulated 

microstructure. 

 
Figure 14: Microstructure created by the 

Monte Carlo simulation. 
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of the microstructural properties. Microstructures with small variations will have a smaller region of dissimilitude 
than microstructures with large variations. 

Once the microstructure surrounding the nucleating grain is simulated, the small crack growth is simulated. The 
equations governing small crack growth depend on the condition at the tip of the slip band. The theory and 
mathematical models used in the small crack growth analysis were outlined in the last bimonthly report. The 
following describes the flow of the Monte Carlo simulation.  

5.2.1 Propagated slip band.  
First, the propagated slip band phase is considered. The crack tip is at L0 in Figure 14. The slip band tip is in 

zone 1. 
If the effective microstructural stress, σeff , is greater than the effective frictional stress, keff , then the zone has 

yielded and the slip band tip has traversed to the next zone boundary. In this case, the propagated slip band phase 
requires zero cycles and the next phase of blocked slip band is considered. 

If σeff  < keff  then the slip band has not yet reached the next zone boundary and the position of the slip band tip 
is determined. An iterative technique is needed to solve for the location of the slip band tip because the equation 
describing its location is not closed form. Newton's method is used with the convergence criteria that successive 
values be within 0.1da, where da is the crack growth increment which is an input variable. (da must be some small 
fraction of the average grain diameter.) Once the location of the slip band tip has been determined, the crack tip 
opening displacement, φt , is evaluated. The number of cycles needed for the crack tip to traverse a distance da is 
calculated by 

 tC
dN

da
φ′

=  (51) 

where tφ  is the crack tip opening displacement. The new position of the crack tip is a + da. The process is repeated 
until the slip band tip reaches the next zone boundary. At this point, the blocked slip band phase begins. 

5.2.2 Blocked slip band. 
 The crack tip is located at a  determined form the above propagated slip band routine. The slip band tip is 

blocked at the zone boundary. The microscopic stress intensity factor mK  is calculated. If Km > Kmc  then the slip 
band tip successfully penetrates the zone boundary. In this case, the blocked slip band phase requires zero cycles and 
the propagated slip band phase is considered for the next zone. If Km < Kmc then tφ  is calculated. The number of 
cycles needed for the crack tip to traverse a distance da  is calculated using Eq. (51). The new position of the crack 
tip is a da+ . The process is repeated until the slip band tip penetrates the zone boundary or the crack growth 
arrests. 

The slip band tip will penetrate the zone boundary when Km > Kmc. With each successive iteration, the crack tip 
grows da and Km  increases. However, as the crack tip approached the grain boundary, φt approaches zero. This 
causes dN to approach infinity in Eq. (51). Therefore, if Km < Kmc when the crack tip reaches the grain boundary, the 
crack growth arrest. In other word, if the crack tip reaches the zone boundary and the stress intensity factor is still 
less than critical, the crack stops growing. 

If the crack growth arrest, the next surface grain is generated. If the crack growth does not arrest, the slip band 
tip successfully penetrates the zone boundary and the propagated slip band phase is considered for the next zone. 

The crack continues to grow through propagated and blocked phases of successive zones until the crack is 
arrested or the slip band tip has reached the end of the microstructural dissimilitude region at which point the crack 
enters the long crack growth phase. 

5.3 Long Crack Growth 
Once the crack has reached the long crack growth stage there is no mechanism for blockage. The number of 

cycles spent in the long crack growth stage is calculated using Paris law. 

6 Fatigue Life Predictions 

6.1 Crack Nucleation 
The crack nucleation model  has previously been investigated by Tryon and Cruse [93, 94]. Tryon et al. [95] 

developed a first order reliability method (FORM) to investigate scatter in fatigue crack nucleation. The results of 
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the investigation are briefly presented here. The predicted shape of the crack nucleation life distribution was similar 
to the experimentally observed shapes found in the literature. The COV of crack nucleation life was predicted to 
increase as the applied load decreased and the COV was independent of the mean grain size. These predictions are 
in agreement with the experimental findings. Tryon and Cruse [94] use FORM to investigate the sensitivity of  
fatigue to the random variables and how the sensitivity changes with reliability level.  

6.2 Small Crack Growth 
Small crack growth behavior is modeled using the small crack growth phase of the Monte Carlo FORTRAN 

software. The results are determined using the parameters in Table 3 . These values are characteristic of a stainless 
steel. The results are compared with trends in the experimental data from the literature. The comparisons show that 
the small crack growth model is able to predict the significant aspects of small crack growth behavior.  

One aspect of small crack growth behavior is that the average crack growth rate is much higher than what 
would be predicted based on long crack growth data and applied K∆ . Phillips and Newman [96

K∆
] showed that, not 

only do small cracks grow much faster than  equivalent long cracks, but that da/dN versus K∆  increases with 
applied stress. Thus, K∆ based similitude is not valid for small crack growth. 

Figure 15 shows the predicted average crack growth rate as 
a function of applied K∆ . The results compare favorably with 
experimental results of Phillips and Newman [97

Another aspect of small crack growth behavior is that the 
mean crack growth rate for coarse grain microstructures is 
higher than the crack growth rate for fine grain microstructures 
of the same alloy [

].  

98]. This is in contrast to long crack growth 
rate behavior that shows that, in general, the crack growth rate 
for coarse grain microstructures is lower than fine grain 
microstructures. These observations are significant because the 
assumption has been made, based on long crack growth data, 
that the coarse grain materials produce better fatigue resistance. 
However, for cracking in service application, the small crack 
growth regime must be considered. The overall fatigue 
resistance may be driven by the small crack growth behavior 
[99

Figure 16 shows the predicted average crack growth rate 
for two microstructures in which the average grain size has been changed. The figure shows that the crack growth 
rate is lower for the fine grain microstructure. In small cracks, the low growth rate for fine grain microstructures is 
attributed to the fact that there are more grain boundaries available to retard crack growth than what would be 
available over the same distance in a coarse microstructure. The difference in long crack growth rate for different 
grain size microstructures is attributed to two factors: closure and intergranular (grain boundary) cracking. The fine 
grain material has a smoother fracture surface allowing for less opposing crack face roughness induced closure. An 
element of intergranular cracking is observed as the plastic zone 
becomes large compared the grain size [

].  

100]. Intergranular 
crack growth rates are generally higher than transgranular 
[101

K∆
]. The introduction of the intergranular cracking will take 

place at a lower  for the fine grain material. A combination 
of less closure and more intergranular cracking causes a 
reduction in the overall fatigue resistance for the fine grain 
material. 

Figure 17 shows the predicted crack growth rate as a 
function of crack length for 5 cracks that have successfully 
penetrated the first grain boundary. The crack growth rate 
seems to vary haphazardly as the crack interacts with the 
microstructure. Similar behavior has been observed 
experimentally by many investigators [102, 103]. The only 
obvious correlation that has been made between the crack 
growth rate and the microstructure is that the large jumps in 

 
Figure 15: Predicted applied stress effect on 

crack growth rate. 

 
Figure 16: Predicted grain size effect on small 

crack growth rate. 



 

 

22 

 

crack growth rate can be associated with the crack tip nearing 
the grain boundary. 

The small crack growth equations indicate that several 
factors govern the interaction between the crack growth rate and 
the microstructure. 

1. The crack length. 
2. The local effective resolved shear stress at the crack 

tip. 
3. The local effective frictional stress at the crack tip. 
4. The slip band length. 
5. The effective resolved shear stress along the slip band. 
6. The effective frictional stress along the slip band. 
7. If the slip band tip is propagating or blocked. 

 To illustrate these interactions, consider the predicted small 
crack growth rate versus crack length curve for a single crack 
chosen at random shown in Figure 18. Grain boundaries are 
located at O, D, and F. The average frictional stress is 70 MPa. 

The average resolved shear stress is 41.4 MPa. The local effective properties are shown in the figure. The following 
list describes the conditions governing crack growth for the various regimes in Figure 18. 
1. Crack tip between O and A. The crack tip is in zone 1. The slip band tip is propagating in zone 1. 
2. Crack tip between A and B. The crack tip is in zone 1. The slip band tip is blocked at the boundary between 

zones 1 and 2. 
3. Crack tip between B and C. The crack tip is in zone 

1. The slip band tip is propagating in zone 2. 
4. Crack tip between C and D. The crack tip is in zone 

1. The slip band tip is blocked at the boundary 
between zones 2 and 3. 

5. Crack tip between D’ and E. The crack tip is in zone 
2. The slip band tip is blocked at the boundary 
between zones 2 and 3. 

6. Crack tip between E’ and F. The crack tip is in zone 
2. The slip band tip is blocked at the boundary 
between zones 3 and 4. 

7. Crack tip between F’ and G. The crack tip is in zone 
3. The slip band tip is blocked at the boundary 
between zones 3 and 4. 
As the crack grows the slip band becomes large and 

spans several grains. The crack continues to grow in such 
a manner until the effective properties of the material 
between the crack tip and the slip band tip approach the 
bulk properties. 

6.3 Predicted Total Fatigue Life of a Test 
Specimen 

The most thorough investigation of the scatter in fatigue life available in the open literature is that of or most 
alloys Bastenaire [11]. Bastenaire performed an investigation of the scatter in fatigue life for five different grades of 
low alloy steel. Steels may nucleate cracks by mechanisms other than slip band cracking depending on the alloy 
composition and the impurities. However, the trend in the scatter in steel data has been observed in other metallic 
alloys [9]. Bastenaire performed rotating bending fatigue experiments for many stress levels for each grade of steel 
with several hundred specimens for each stress level. 

Figure 20 shows the trends in the scatter exhibited in Bastenaire's data. (The curves are re-plotted from the data 
in Fig. 7 of Bastenaire) The general trend is that the COV (indicated by the slope of the curves) is fairy constant for 
applied stresses well above the fatigue limit (363-324 MPa). As the applied stress decreases, the COV starts to 
increase (304-285 MPa). As the applied stress approaches the fatigue limit, run-outs start to occur. The right tail of 

 
Figure 17: Predicted small crack growth 

behavior of five cracks. 

 
Figure 18: Predicted small crack growth behavior. 
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the distribution becomes heavy which causes a line through the 
data to bend to the right (265-245 MPa). If data plots as a non-
straight line in Figure 20 the lognormal distribution is no longer 
valid. The 363 MPa data curves slightly to the left indicating 
the distribution has a short right tail and the data can also be 
fitted to the normal distribution. As the applied stress 
decreases, the curvature shifts to the right.  

Comparison of Figure 20 with the results in Figure 19 
shows that the model predicts all of the above trends observed 
in the experimental data. 

7 Conclusions  

This paper showed the feasibility of probabilistic 
microstructural fatigue modeling. Information was found in the 
open literature on the mechanism that drive crack nucleation 
and small crack growth for many alloys. Damage accumulation 
models were developed that address the most important factors 
driving microstructural crack growth. The random variables that 
govern fatigue were estimated from empirical data and 
theoretical considerations. Statistical Volume Element FEM 
models based on Voronoi cells were able to accurately represent 
the local stress response. Simple closed-form equations were developed to approximations statistical volume 
element models based on the crystallographic anisotropy. A Monte Carlo simulation software was written which 
combined all of the above with the damage accumulation models to correctly predict: 

• The shape of the crack nucleation life distribution 
• Multiple cracks 
• The applied global stress effects and the mean grain size effect on the COV of crack nucleation life. 
• The applied global stress effects and the mean grain size effect on small crack growth rate. 
• The variation in small crack growth rate. 
• The shape of the total fatigue life distribution. 
• The applied global stress effects on the shape of the total fatigue life distribution. 
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Figure 19: Predicted fatigue life distribution 

plotted on lognormal paper. 

 
Figure 20: Fatigue life test data plotted on 

lognormal paper (data from Bastenaire (1972). 
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