

Uncertainty Propagation in a Computational Fatigue Model of an Airframe Structure

Animesh Dey, Robert Tryon, Jeremy Holmes, Robert McDaniels

VEXTEC Corporation, Nashville TN

February 14-18, Downtown Nashville, Tennessee, Music City Center

Motivation: Why do we need Uncertainty Management?

- Simulation-based design and certification is fundamentally about making decisions with uncertainty.
- The goal is to decide efficiently:
 - What is the actual uncertainty in the simulation results?
 - How will changing the scale and fidelity of the analysis impact the uncertainty in the results?
 - What does this mean for the product reliability?

Uncertainty exists : How do best manage its impact on reliability

Sources of Uncertainty & Propagation

- Sources of Uncertainty :
 - Physical variability
 - Limited data
 - Statistical uncertainty
- Use All available data and knowledge
- Physics-based computational analysis
- Probabilistic analysis to explicitly propagate uncertainty
- Updating when new data/knowledge becomes available

VEXTEC Multi-Disciplinary Example: Airframe Longeron

Tennessee, Music City Center

Monte Carlo Simulation Sequence

Aerodynamic Maneuver and Sources of Uncertainty

- Longitudinal Stick Force
- Peak time of Stick Force
- Mach #
- Altitude

Global FEM with Maneuver loads

Uncertainty in Aerodynamics leads to Uncertainty in Global Stresses

Orientation of the Local FEA

February 14-18, Downtown Nashville, Tennessee, Music City Center

Filtered Mission Profile for a Single Maneuver

February 14-18, Downtown Nashville, Tennessee, Music City Center

Final Mission Profile: Multiple Maneuvers, Scaled and Filtered

Final mission stresses are random

Final Mission		
Hi	Lo	Repeats
0.668	-0.041	. 1
0.040	0.036	1
1.000	-0.153	1
0.803	0.615	1
1.004	0.224	· 1
0.679	0.568	1

Fatigue Analysis for 7XXX Aluminum

- Assumes damage starts at an inclusion
- If the damage can grow, progress to small flaw fracture mechanics (SFFM) and grow the damage for each cycle of the mission.
- Continue with SFFM until the average microstructural properties at the crack tip are equal to the bulk average material properties.
- If damage can still grow, progress to LEFM, Paris Law. Continue cycle-by-cycle damage growth until $\Delta K > \Delta K_{IC}$

Meshing FEA & Material

SFFM: Grain Level Processing

Grain lives statistically combined into element life and repeated for all FEA elements

Element – Component – System – Fleet

VT₁, VT₂, VT₃ ... VT_{1,000}

February 14-18, Downtown Nashville, Tennessee, Music City Center

VEXTEC Multi-Disciplinary Example: Airframe Longeron

Tennessee, Music City Center

Inner & Outer Loop Simulation results

POF itself becomes a random outcome

Result: Bounds on POF

Sensitivity to Uncertainty in Mean Particle Size (50%)

Variation in particle size mean by as much as 50% shows *NO* noticeable change in median POF variation -20%-25%

VEXTEC?

Sensitivity to Uncertainty in Mean Stress Amplitude (15%)

15% uncertainty in mean $\Delta\sigma$ results in median POF increasing to 28% with bounds between 20% and 36%

Bayesian Update Methodology

It is a method to update the model parameters based on updated/experimental results

Bayes Network

• X_1 is updated through experimental results of X_1 (Model 1) • X_2 can be updated from experimental results of Y'(Model 2)

•Now updated X_1 and X_2 can be used to update the result Y

Computation of Posterior Distribution

- Prior density= $f(X_1)$
- Data = $X_{1/exp}$ (i.e., $X_{1/exp}$ is an observed value of X_1)
- Posterior density = likelihood of X₁ given X_{1/exp} is observed = f'(X₁)

$$f'(X_1) = \frac{f(X_1)f(X_{1/exp}|X_1)}{\int_{-\infty}^{\infty} f(X_1)f(X_{1/exp}|X_1)}$$

Methods such as Metropolis-Hastings (M-H) and slice sampling algorithms are very useful in generating posterior density functions

Problem

- Cracks grow according to the following equation:
 - $a_m = a_{m-1} + C * (\beta * \sqrt{\pi})^n (\sqrt{a_{m-1}})^n (\Delta \sigma_1^n + \Delta \sigma_2^n + \Delta \sigma_3^n + \cdots)$
 - a_{m-1} is the crack size at the previous mission
 - C is Paris Law Coefficient
 - β = 1.12 is the crack shape parameter
 - n = 4.73 is Paris Law exponent
 - $\sum_{i=1} \Delta \sigma_i^n = 69243532$ is the mission profile
 - The equation is calculated recursively to obtain the crack size after "m" missions
- Given observations of the crack at a specific mission, we want to use a Bayesian model to update the crack size (a0) and & Paris Coefficient(C) at mission 0

Bayesian Experiment - 3

- Posterior Distribution
 - Single Observation of 1 inch: (Larger than expected median value)
 - C = (1.944 e-11, 0.24)
 - a0 = (0.0227, 0.25)

Bayesian Experiment-3 results

As expected the posterior (blue trace) shifts to the right since the observation was larger than expected value

ЧÜ

Benefits of Uncertainty Propagation Model

- Sensitivity of the uncertainty in the analysis prediction to each uncertainty/approximation can be estimated
- Once a Computational Model is built, the methodology can be used to continually update based on new information to arrive at most robust predictions.
- A more judicious allocation of computational fidelity and resources can be made without sacrificing accuracy.

VEXTEC U.S. Federal Govt. Relationship

VEXTEC Clients	Successes Achieved With VEXTEC Technology
USAF	 Partner in the Airframe "<u>Digital Twin" Initiative</u> Use UQ/UM to calibrate and predict test results Predict the confidence bounds on damage risk
FDA	 Only 1 of 2 companies in the <u>MDDT Pilot program</u> Use VLM to simulate and certify bench testing of cardiac leads
USN	 Use VLM +UQ/UM to forecast fleet maintenance Predict Fatigue + Corrosion Damage risk

145th Annual Meeting & Exhibition

Over 100 VEXTEC Commercial Successes

VEXTEC Clients	Successes Achieved With VLM
American Airlines	\$4 M/yr saved on bearings
Cummins Engine	\$5 M saved from \$150K investment
Boston Scientific	Working with FDA towards methods approval
Oil & Gas Co.	\$12 M /yr saved in equipment leasing
Fortune 500 Co.	\$3 M saved in manufacturing line maintenance
Fortune 100 Co.	\$250 K/month on machining efficiencies
Chrysler	Early Adopter using VEXTEC software since 2001

CHRYSLER American Airlines

February 14-18, Downtown Nashville, Tennessee, Music City Center

Thank You!

- Founded in 2000 in Nashville
- <u>Software backed by 7 Patents</u>: Virtual Life Management[®] (VLM[®]) & VPS-MICRO[®]
- <u>Value Proposition</u>: Help companies assure product reliability and reduce cost
 - Leverage physical testing for increased confidence
 - Forecast product durability and manage product life cycle risk
- <u>Business Model</u>: Hybrid consulting services, software licensing and training

