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Motivat ion: Why do w e need 
Uncertainty Management?

• Simulation-based design and certification is 
fundamentally about making decisions with uncertainty.

• The goal is to decide efficiently: 

– What is the actual uncertainty in the simulation 
results?

– How will changing the scale and fidelity of the 
analysis impact the uncertainty in the results?

– What does this mean for the product reliability?

Uncertainty exists : How do best manage its impact on 
reliability
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Sources of Uncertainty &  Propagat ion

• Sources of Uncertainty :

– Physical variability 

– Limited data

– Statistical uncertainty

• Use All available data and 
knowledge

• Physics-based computational 
analysis

• Probabilistic analysis to explicitly 
propagate uncertainty

• Updating when new 
data/knowledge becomes available 
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Monte Carlo Simulat ion Sequence

Input:

∆ Maneuver

Aerodynamics,

FEA,

Fatigue Model 

(Model error)
Input:

∆ Particle size
(Mean is Uncertain)

Output: POF 

(Uncertainty bounds)

Outer Loop

Inner Loop
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Aerodynamic Maneuver and Sources of 
Uncertainty

• Longitudinal Stick Force

• Peak time of Stick Force

• Mach #

• Altitude

Global FEM with Maneuver loads
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Uncertainty in Aerodynamics leads to 
Uncertainty in Global Stresses
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Orientat ion of the Local FEA 
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Filtered  Mission Profile  for a Single 
Maneuver
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Final Mission Profile: Mult iple Maneuvers, 
Scaled and  Filtered

Final Mission

Hi Lo Repeats

0.668 -0.041 1
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1.000 -0.153 1

0.803 0.615 1

1.004 0.224 1
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Fatigue Analysis for 7XXX Aluminum

• Assumes damage starts at an inclusion

• If the damage can grow, progress to small flaw 
fracture mechanics (SFFM) and grow the damage for 
each cycle of the mission.

• Continue with SFFM until the average microstructural 
properties at the crack tip are equal to the bulk 
average material properties.

• If damage can still grow, progress to LEFM, Paris 
Law. Continue cycle-by-cycle damage growth until ∆K 
> ∆KIC
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Component Design
Configuration

Material
Configuration

VLM
Computational

Processing

Mapping the 
Elements

Component 
Simulation

FLEET 
Simulation

Meshing FEA &  Material 

Translate Microstress
to each Grain

Superimpose 
Natural Substructure

Initial Element
Map FEA Stress
to Substructure
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SFFM: Grain Level Processing

Grain characteristics and stress used in damage equations

Grain lives statistically combined into element life and repeated for all 
FEA elements
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Element – Component – System – Fleet  

Tooth Life:  15,932 cycles
Failure Cause: Defects

VLM Integration for 
Entire Component

1st Virtual Twin 
Gear Simulated

Component Life:
14,334 cycles

17,561 24,793

27,943

22,229

25,34218,961

22,113

Repeat Sequence
for Each Tooth

Integrate VLM 
Results  with FEA

Run 1,000 SimulationsVT1, VT2, VT3 … VT1,000
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Inner &  Outer Loop Simulat ion results

• POF itself becomes a random outcome
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Result : Bounds on POF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 20% 40% 60% 80% 100%

Li
k

e
li

h
o

o
d

 %

Probability of Failure

95% Lower

Mean

95% Upper

Assuming there is no uncertainty in the RVs the median 
POF can vary between 20%-25%
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Sensit ivity to Uncertainty in
Mean Part icle Size (50%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 20% 40% 60% 80% 100%

Li
k

e
li

h
o

o
d

 %

Probability of Failure

Variation in particle size mean by as much as 50% shows 
NO noticeable change in median POF variation -20%-25%
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Sensit ivity to Uncertainty in
Mean Stress Amplitude (15%)
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15% uncertainty in mean ∆σ results in median POF 
increasing to 28% with bounds between 20% and 36%
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Bayesian Update Methodology

It is a method to update the model parameters 
based on updated/experimental results

•X1 is updated through experimental results of X1 (Model 1)

•X2 can be updated from experimental results of Y’(Model 2)

•Now updated X1 and X2 can be used to update the result Y

Bayes Network
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Computat ion of Posterior Distribut ion

• Prior density=  f(X1)

• Data =  X1/exp (i.e., X1/exp is an observed value of X1)

• Posterior density =  likelihood of X1 given X1/exp is 
observed = f’(X1)

Methods such as Metropolis-Hastings (M-H) and 
slice sampling algorithms are very useful in 
generating posterior density functions
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Problem

• Cracks grow according to the following equation:

– 𝑎𝑎𝑚𝑚 = 𝑎𝑎𝑚𝑚−1 + 𝐶𝐶 ∗ 𝛽𝛽 ∗ π 𝑛𝑛 𝑎𝑎𝑚𝑚−1 𝑛𝑛 ∆σ1𝑛𝑛 + ∆σ2𝑛𝑛 + ∆σ3𝑛𝑛 +⋯
– 𝑎𝑎𝑚𝑚−1 is the crack size at the previous mission

– C is Paris Law Coefficient

– 𝛽𝛽 = 1.12 is the crack shape parameter

– n = 4.73 is Paris Law exponent

– ∑𝑖𝑖=1∆σ𝑖𝑖𝑛𝑛 = 69243532 is the mission profile

– The equation is calculated recursively to obtain the crack size 
after “m” missions

• Given observations of the crack at a specific mission, we 
want to use a Bayesian model to update the crack size 
(a0) and  & Paris Coefficient(C) at mission 0
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Bayesian Experiment - 3

• Posterior Distribution

– Single Observation of 1 inch: (Larger than 
expected median value)

• C = (1.944 e-11, 0.24)

• a0 = (0.0227, 0.25)
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Bayesian Experiment-3 results

As expected the posterior (blue trace) shifts to the right 
since the observation was larger than expected value



2525
February 14-18, Downtown Nashville, 
Tennessee, Music City Center 25

Benefits of Uncertainty Propagat ion 
Model

• Sensitivity of the uncertainty in the analysis prediction 
to each uncertainty/approximation can be estimated

• Once a Computational Model is built, the 
methodology can be used to continually update based 
on new information to arrive at most robust 
predictions.

• A more judicious allocation of computational fidelity 
and resources can be made without sacrificing 
accuracy.
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VEXTEC U.S. Federal Govt . Relat ionship

VEXTEC Clients Successes Achieved With VEXTEC Technology

USAF • Partner in the Airframe “Digital Twin” Initiative

• Use UQ/UM to calibrate and predict test results
• Predict the confidence bounds on damage risk

FDA • Only 1 of 2 companies in the MDDT Pilot program

• Use VLM to simulate and certify bench testing of 
cardiac leads

USN • Use VLM +UQ/UM to forecast fleet maintenance
• Predict Fatigue + Corrosion Damage risk
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Over 100 VEXTEC Commercial Successes 
VEXTEC Clients Successes Achieved With VLM

American Airlines $4 M/yr saved on bearings

Cummins Engine $5 M saved from $150K investment

Boston Scientific Working with FDA towards methods approval

Oil & Gas Co. $12 M /yr saved in equipment leasing

Fortune 500 Co. $3 M saved in manufacturing line maintenance

Fortune 100 Co. $250 K/month on machining efficiencies 

Chrysler Early Adopter using VEXTEC software since 2001
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 Founded in 2000 in Nashville

 Software backed by 7 Patents: Virtual 
Life Management® (VLM®) & VPS-
MICRO®

 Value Proposition: Help companies 
assure product reliability and reduce 
cost

• Leverage physical testing for 
increased confidence

• Forecast product durability and 
manage product life cycle risk

 Business Model: Hybrid – consulting 
services, software licensing and 
training

Please visit our Booth# 534

Thank You!
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