

Microstructural Small Flaw Fracture Mechanics for Improved Design Analysis

Robert Tryon Robert McDaniels Animesh Dey

February 14-18, Downtown Nashville, Tennessee, Music City Center

Discussion Topics

Issues and Objectives

- Laboratory Testing
- Damage Mechanisms
- Computational Modelling

Acknowledgements

- Michael Gran, Air Force Research Laboratory, Aerospace Systems
 Directorate
- Adam Pilchak, Air Force Research Laboratory, Materials and Manufacturing Directorate
- Andrew Rosenberger, Air Force Research Laboratory, Materials and Manufacturing Directorate
- Ji Eun Park, Lockheed Martin
- Peter Liaw, University of Tennessee

Issues and Objective

- Issue:
 - Linear elastic fracture mechanics (LEFM) methods are sometimes erroneously applied where the initial defect size is outside the range LEFM applicability.
 - Typically this occurs when starting flaw size assumptions are on the same order as the length scale of the microstructure.
- Objective:
 - Determine approaches that can be applied based on flaw size, orientation, material, and applied loading
 - Develop methods for accurate damage propagation prediction outside of the traditional LEFM regime (small crack growth)
 - Use a physically based treatment instead of purely empirical approaches

Large Scatter in Small Crack Growth Rate

Material Specimen Geometry

 Two holes are D = 1/32" and spaced 5 mm apart, centered on the center of the specimen

Test Apparatus at University of Tennessee

- Load 2400 lb (max concentrated stress ~ 132 ksi)
- R ratio (min stress / max stress) = 0.1
- Frequency 5 Hz
- Triangle wave
- Room Temperature
- Laboratory Air

Cracked Fatigue Specimen

February 14-18, Downtown Nashville, Tennessee, Music City Center

Another Cracked Fatigue Specimen

February 14-18, Downtown Nashville, Tennessee, Music City Center

Fracture Surface

Typical Ti64 from VEXTEC Library

VEXTEC Test Specimen 1

Crystallographic crack growth rate

- Planes do not brittle cleave
 - For figure at right, crack growth rate of 0.07 μm/cycle.
 - Compared, the average crack growth rate across specimen of 0.2 μm/cycle.
- Therefore a significant amount of the crack growth life is spent in crystallographic crack growth.

Marker bands (highlighted in red) on Specimen 1 showing the crack growth distance (da) in 2500 cycle increments (dN).

Grain level damage

Bowen, Acta Metall., Vol 23, 1975

- Bowen cycled specimens cut for crack growth on different crystal orientations
- Observed fracture surfaces.

LS, SL and TS, fracture surface covered with striations parallel to crack growth

LT, ST and TL, fracture surface with few striations not parallel to crack growth

Design Analysis Package Framework

Design Analysis Package Framework

VEXTEC uses proven Equations for each damage stage

- Use testing to gather damage mechanisms
- Use testing to gather parameter values
- Establish transition rules from experimental observations

Void

Statistical Modeling of Materials

Damage mechanisms used to determine potential crack nucleation sites

Damage element available for each \succ mechanism

Probability

Example: Microstructurally Short Crack

Damage Equations in the Package

 Fatigue crack growth

$$\frac{da}{dN} = C' \Delta \phi_t$$

$$\phi_{t} = \frac{2k_{j}a}{\pi^{2}A} \ln \frac{c}{a} + \sum_{i=j+1}^{n} \frac{(\tau_{i-1} - k_{i-1}) - (\tau_{i} - k_{i})}{\pi^{2}A} g(a; c, L_{i-1})$$

$$\Delta K_{Eff} = \beta (\sigma_{\max} - \sigma_{\cos}) \sqrt{\pi a}$$

Modeling Closure

- Difference between physically small crack and long cracks
 - Plastic deformation of the wake
 - Wake roughness caused by crystallographic crack growth
 - Shielding caused by crack branching
 - Wake roughness caused by oxidation products
- Wake roughness caused by crystallographic crack growth is the driver in β annealed Ti

Crack with asperity of height h1 and width w.

Link SFFM to FEA

VEXTEC inserts microstructure into FEA element using Microstructural Volume Element approach to predict statistical distribution of hours to a LEFM initial flaw size.

US Patent 7,016,825: Method and Apparatus for Predicting the Failure of a Component

Develop Demonstration Software

- Combine models into a demonstration tool that predicts fatigue life of β annealed titanium specimens
- Inputs includes
 - Load
 - Specimen geometry
 - Material microstructure:
 - Grain size
 - Texture
 - Mechanisms
- Output: statistical distribution of damage size vs. cycles

Compare with other microstructure in VEXTEC library

Typical Ti64 from VEXTEC Library

AF Ti64

AF Ti64 is smaller grain size with similar morphology

Model update

#	Parameter	Explanation
1	Grain size	Mean=640 μ; CoV=0.417
2	Grain Boundary SIF	2.5ksi√in
3	Frictional Strength	Weibull; Char. Val.= 113 ksi; Slope=4.5
4	Small Crack Coeff.	0.01
5	Paris Law Exponent	3.9
6	Paris Law Coeff.	Normal; Mean=5.0E-12; CoV=0.3
7	Shear Modulus (G)	6.31E+3 ksi
8	Poisson's Ratio (v)	0.3
9	Orientation	Beta (see previous report)
10	Asperity (% of grain size)	Height=1% ; Width=10%; Distance=100%; Modulus=100%

Typical Geometry Input

Microstructural Phases

Crack Growth Properties

In General, the "Microstructural Phases" & "Crack Growth Property" inputs are "locked" and the user cannot change them. Super-users can modifying these input parameters.

Typical VPS-MICRO Output

February 14-18, Downtown Nashville, Tennessee, Music City Center

Typical Load and Save Simulation Results

VEXTEC VPS-INICRO									10	- 0 ×	(
File Help											
Load try		Dec its 1 Parate View						ĥ			
Save <u>Type</u>		Detailed Kesults View						J			
Exit	Specimen	Microckracks	Total Life	Nucleation Life	Short Crack Life	Long Crack Life	Initiation Grain Size	Initiation Defect Size	Failure Phase	Schmid Facto	or
Select Mission Type	1	417	1.479e+4	8.004e+3	5.634e+3	1.156e+3	4.189e-5	0.000e+0	1	2.322e+0	
♥ Material	2	1189	5.441e+4	1.742e+4	3.563e+4	1.365e+3	2.925e-5	0.000e+0	1	2.043e+0	
Select Material	3	911	3.605e+4	1.042e+4	2.438e+4	1.259e+3	3.883e-5	0.000e+0	1	2.826e+0	
Microstructural Properties	-	1068	4.301e+4	1.804e+4	2.325e+4	1.722e+3	1.931e-5	0.000e+0	1	2.044e+0	
Microstructural Phases	5	881	3.229e+4	2.221e+4	8.756e+3	1.319e+3	3.851e-5	0.000e+0	1	2.037e+0	
Crack Growth Parameters	6	THI7	4.402e+4	1.264e+4	3.017e+4	1.210e+3	3.881e-5	0.000e+0	1	2.743e+0	
Defects	7	656	2.218e+4	5.083e+3	1.601e+4	1.093e+3	4.166e-5	0.000e+0	1	2.077e+0	
Mechanisms	8	1069	4.318e+4	3.899e+3	3.774e+4	1.542e+3	3.182e-5	0.000e+0	1	2.042e+0	
Run Simulation	9	831	3.037e+1	6.910e+3	2.215e+4	1.307e+3	3.683e-5	0.000e+0	1	2.062e+0	
Cature Completion	10	629	2.047e+4	1.369e+4	5.848e+3	9.311e+2	4.151e-5	0.000e+0	1	2.039e+0	
Setup Simulation	11	845	3.056e+4	3.8098+3	2.486e+4	1.896e+3	3.560e-5	0.000e+0	1	2.035e+0	T
Simulation Results	12	865	3.133e+4	9.651e+3	2.080e+4	8.775e+2	3.858e-5	0.000e+0	1	2.074e+0	T
SN Curve For All Sets	13	1110	5.152e+4	7.627e+3	4.274e+4	1.156e+3	3.687e-5	0.000e+0	1	2.152e+0	T
<u>SN Curve</u>	14	1082	4.528e+4	1.938e+4	2.4828+4	1.083e+3	2.832e-5	0.000e+0	1	2.043e+0	1
Set 1 (861.845)	15	1066	4.219e+4	2.527e+4	1.509e+4	1.826e+3	4.230e-5	0.000e+0	1	3.035e+0	1
Life Prediction	[Towned]										
Failure Parameters	Export									_	
Individual Results View							Simu	lation resul	ts can		
Detailed Results View											
Set 2 (779.108)							De sa	aved as a ".	micro		
Set 3 (696.371) file and loaded into the											
Set 4 (655.002)											
software program from											
							the "I	File" menu			
Model Type: SSA Current Materi	al: SI-HSL	S37HRC									

Model Results

Next Steps

- Model
 - Additional investigation of mechanism for beta annealed Ti
 - Extend damage accumulation simulation
- Software
 - Damage models and interface to external damage models
 - Interface to FEA and inspection software

- Tests
 - Perform test to extend the mechanist models
 - Develop tests standards to gather data to populate model
- Commercialization
 - AFRL vehicle directorate and Lockheed Martin
 - FEA customer base

VEXTEC U.S. Federal Programs

VEXTEC Clients	Successes Achieved With VEXTEC Technology
USAF	 Partner in the Airframe "<u>Digital Twin" Initiative</u> Use UQ/UM to calibrate and predict test results Predict the confidence bounds on damage risk
FDA	 Only 1 of 2 companies in the <u>Medical Device</u> <u>Development Tool</u> program for computational modes Use VLM to simulate and certify bench testing of cardiac leads
USN	 Use VLM +UQ/UM to forecast fleet maintenance Predict Fatigue + Corrosion Damage risk

Over 100 VEXTEC Commercial Successes

VEXTEC Clients	Successes Achieved With VLM
American Airlines	\$4 M/yr saved on bearings
Cummins Engine	\$5 M saved from \$150K investment
Boston Scientific	Working with FDA towards methods approval
Oil & Gas Co.	\$12 M /yr saved in equipment leasing
Fortune 500 Co.	\$3 M saved in manufacturing line maintenance
Fortune 100 Co.	\$250 K/month on machining efficiencies
Chrysler	Early Adopter using VEXTEC software since 2001

CHRYSLER American Airlines

Tennessee, Music City Center

Thank You!

- Founded in 2000 in Nashville
- <u>Software backed by 7 Patents:</u> Virtual Life Management[®] (VLM[®]) & VPS-MICRO[®]
- <u>Value Proposition</u>: Help companies assure product reliability and reduce cost
 - New products to market quickly
 - Leverage physical testing for increased confidence
 - Forecast product durability and manage product life cycle risk
- <u>Business Model</u>: Hybrid consulting services, software licensing and training

machine design

GEARSolutions¥

Please visit our Booth# 534

Questions