The Comet’s Resonance

aircraft window design has improved fatigue resistance

A Modern Aircraft Window (Image courtesy of podpad at FreeDigitalPhotos.net)

A couple of months ago, there was an anniversary that might not be very well-known: July 27, 1949. It is a date as momentous for air travel as it is for the advancement of the field of fatigue and fracture mechanics. On this date, the de Havilland Comet, the world’s first jet airliner designed and built for commercial passengers, underwent its first test flight in Hertfordshire, England. The prototype performed admirably, and paved the way for the Comet’s entry into service by the British Overseas Airways Corporation in 1952. The designs of the Comet 1 and 1A aircraft were revolutionary, with two de Havilland Ghost turbojet engines built into each wing, a pressurized cabin for the comfort of 44 passengers, and large square windows yielding a generous visual perspective that was rarely seen by civilians before that time. Unfortunately, it was the convergence of the last two features (pressurization and square-shaped windows) that led to a series of fatal crashes in the first two years of the Comet’s service. The entire fleet was grounded in 1954 while investigations took place, the results of which concluded that repeated pressurization/re-pressurization caused cracks to initiate and grow at the corners of the planes’ square windows. During each pressurization cycle, the fuselage’s metal was being further “fatigued” with cracks originating from locations of high “stress concentration” at these window corners. The terms “fatigue” and “stress concentration” were relatively new at the time, as materials science (as we now know it) was still a new field of study. The Comet was redesigned in subsequent years, with oval windows and other safety improvements, but by then (the late 1950s) the market had been overtaken by Boeing’s larger and longer-range 707 model. Boeing went on to dominate the commercial airliner industry for decades to come.

The Comet’s legacy is not completely negative however; these early failures helped develop the backbone of fatigue and fracture mechanics that would be used, refined and evolved over the next 70 years. Indeed, it was only 20 years after that first test flight of the Comet that NASA’s engineering team supported a successful moon landing! Industries beyond aviation and space exploration have benefited from this science as well: heavy machinery, transportation, naval, energy, medical devices…all have been fundamentally changed by the furtherance of materials science principles.

VEXTEC continues this evolutionary effort, by incorporating these “physics of failure” principles into our probabilistic Virtual Life Management® technology. We differentiate ourselves from other computational fatigue methods, by combining a component’s inherent microstructural variability with physics-based damage mechanisms and realistic loading histories to accurately predict fatigue life. As structures become increasingly more complex, with continual demands for lighter-weight materials (for both manufacturing and operational cost savings) and better performance, the need for a comprehensive reliability simulation technology becomes clear. No one wants to be the next disastrous chapter in this Comet’s Tale.

Corrosion as the “Bad Guy”

Corrosion of a can

Image courtesy of sakhorn38 at FreeDigitalPhotos.net

The topic of corrosion makes recurring appearances in the media; it seems that when you hear about one corrosion-related problem, invariably there will be others reported-on at around the same time. There has recently been a spate of articles confirming that corrosion is currently a headache to the oil and gas sector (undersea bolt failures), as well as to the aviation sector (corrosion-induced fatigue of turbine engine blades in the new Dreamliner aircraft). Oftentimes these stories are first published by financial-leaning news outlets (Wall Street Journal, CNN Money, Bloomberg), a result of the high visibility and cost that these incidents bring in terms of replacement and downtime to their respective industries. Enough of these stories circulating over the span of a few news cycles will make any investor wary, and will prompt questions on what is being done from a regulatory standpoint to restore confidence in companies’ operations. This is particularly true when these reports of corrosion failures have impacts (real, or perceived) on public and environmental safety.

Of course, corrosion is not a new phenomenon. We have been observing the process of corrosion for centuries in our manmade structures, and have developed ways to physically mitigate its effects (painting, inspection methods, et cetera). However, it has only been in recent history that we a) have deeper understanding of the electrochemical processes that describe corrosion, and b) have the industrial engineering prowess to design and build ever greater machines and superstructures that help make modern life possible (economically-available energy sources and air travel, being prime examples). The confluence of these two factors drive the need for more development of mechanistic approaches to corrosion mitigation, through the use of computer-assisted modeling and simulation.

To that end, more and more resources are being appropriated for the research of these corrosion mechanisms in many of the materials that are used today. For example, members of the LIFT Consortium (Lightweight Innovations for Tomorrow) have begun work on the development of new models and a material properties database that will allow for more accurate simulations of corrosion in aluminum alloys used in aerospace and other transportation sectors (focusing on aluminum alloys containing copper, lithium, magnesium, manganese, and zinc). The materials database will be characterized to such a degree so that precise information is obtained about the interaction between microstructure and corrosion. The team will begin with the characterization of the industry’s workhorse alloys, and then extend work to evaluate newer alloys crated using various manufacturing techniques. The goal is to mitigate corrosion in a broad spectrum of aluminum alloys through improved simulator capabilities.

However, only half of the equation is being studied by LIFT: the corrosion impact on metals…with no discussion of how that corrosion introduces damage states, from which stress corrosion cracking and other types of corrosion-fatigue can arise. VEXTEC has pioneered development of a software for the U.S. Navy that predicts the statistical distribution of stress corrosion cracking in an alloyed aluminum microstructure that has been exposed to a corrosive environment. This software serves as a basis for all types of materials that are impacted by corrosion: the material modelers can provide the inputs of the corroded damage states into the VEXTEC software, which will in turn simulate the result of in-service loading on the durability of the critical structures of interest.

Until such time as corrosion has been completely removed as a mechanism in a critically-stressed component (and that time is not approaching anytime soon), it is enough to just model the corrosion characteristics…we must also be able to effectively model the subsequent damage growth throughout the component’s service life.

 

The Need for Speed

In the race to get products to market, does risk-mitigation get enough time in the winner’s circle?

indy-blog-cover-imageWhat do aerospace, medical device manufacturers, and auto racing all have in common?  Answer: the need to minimize risk of premature/unexpected component failure while crossing the finish line first.  While these industries each have vastly different stakeholders, goals, and success metrics, all look to avoid costly breakdowns in the field.  And speed is key.  Being the first across the finish line in auto racing gives you the largest share of the purse, not to mention first choice of lucrative endorsement deals.  Being the first to market with an innovative or more reliable medical implant or a lighter aircraft component helps in marketing, product launch success, or company profitability and growth.  However, pushing the design limits to gain this speed advantage must be weighed against the possible failure of the component in an unforeseen manner.

Speed in Design

Auto racing is one of the world’s most expensive sporting endeavors.  A recent USA Today article puts the price tag of prepping and running a car in the Indianapolis 500 at nearly $1 million, and that is already assuming that the car is owned outright.  While the bulk of this cost is sunk into parts, staffing, and off-track expenses, a not-insignificant 4.5% of that is spent on controlled testing.  For example, one day at a rolling wind tunnel costs $35,000…more than the MSRP of the average production vehicle on US roadways today.  While the finances of auto racing and the commercial automotive industry may differ, their goals are similar: to create lighter-weight components that will aid (or at least not hinder) aerodynamic performance.  Designers are constantly being tasked with pushing the envelopes of their designs, while still attempting to maintain reliability and risk targets.  These designs, in turn, lead to more expensive and detailed manufacturing/machining techniques and the use of more exotic material alloys.  The uncertainties in every design usually manifest themselves as restrictive knock-down or safety factors that inevitably detract from performance.  Governing bodies in the various auto racing categories (F1, NASCAR, drag racing, to name a few) place additional restrictions in the form of specification limits on components such as engines, body shapes, and spoilers to maintain competitive balance.  Regardless of the type of restriction, if a way to reduce the uncertainty in a design is found, it can be advantageous.  VEXTEC’s Virtual Life Management (VLM) simulation technology can be that solution.  Through rigorous computational analysis of design, load-induced stress, and material, VLM can efficiently identify and quantify those design uncertainties.  VEXTEC has provided VLM support to many of the industry’s leading manufacturers of heavy duty engine connecting rods, engine blocks, and turbochargers.  This new insight has offered engineers the ability to understand where they really are on their design envelope, and how far they can push certain parameters, even before the first test piece is built.

Speed in Optimizing Maintenance

Weight savings and aerodynamics are, arguably, even more critical in the aerospace industry, where the civilian maintenance repair & overhaul (MRO) market is expected to be $56 billion this year.  Engine maintenance alone will take up about 40% of this valuation.  The cost of an unexpected catastrophic failure is much higher here than in the auto world.  But in order to reduce this risk, aircraft must be maintained and repaired.  And while they’re being maintained, they are not in the air delivering passengers, hauling freight, or making money.  So minimizing the downtime is crucial to keeping viable profit margins. VEXTEC has partnered extensively with civil and military aircraft users, employing VLM on a multitude of issues including: unitized wing structures (US Air Force), certifying weld-repaired engine blades (EB Airfoils) and resolving premature bearing failure (American Airlines).  The bearing study, for example, saved American Airlines about $4 million per year by avoiding the repair/replacement of their APU bearings.  The results from these and other studies provide our clients with knowledge they would not have otherwise been able to acquire, and allow for sound financial decisions to be made on fielded components.

Speed in Reliability

One of the fastest-changing industries is the medical device industry.  Technology is racing forward, minimizing invasiveness is driving the miniaturization of implantable devices (especially in heart rhythm monitors), while manufacturing methods are still trying to catch-up.  It seems that no other industry is as heavily scrutinized in terms of reliability and risk, at least in public perception. Medical implants are exposed to harsh internal environments, unpredictable stress and strain cycles, and oftentimes difficult installation procedures.  Yet these devices are counted-on to reliably elevate our quality of life on a daily basis.  The variability observed in material, vendor supply, and manufacturing all play a part in the reliability of the components that make up a medical device.  Through industry-directed capability studies, the VLM technology pioneered by VEXTEC has effectively modeled these sources of variability, virtually tested millions of components, and delivered reliability answers to as many “what-if” scenarios as design and materials engineers saw fit to explore.  The VLM approach reduces the number of blind alleys (ineffective combinations of material, design, and operational limits) that companies would have to travel down through the traditional design-build-test method, and focuses internal R&D resources on the combinations most likely to succeed in both manufacturing cost and operational reliability.

These three high-risk/high-reward sectors are not the only sectors that have benefited from VLM technology.  Indeed, any company looking to speed-up their design phase, reduce their warranty reserves, or just wanting to make more-informed decisions on how their products can best be sourced, manufactured, and used would benefit from a conversation with us.  The green flag has dropped…where are you in the field?

VEXTEC: Meeting the Need for Speed.

SEQUESTERING THE NEXT GENERATION

The hottest word currently being spoken in offices and around dinner tables in the US is “sequestration.” Not since the seminal juror movie 12 Angry Men has the word enjoyed such buzz.  While there are many ongoing debates concerning the political ramifications of this government budget-reduction action (that went into effect on March 1), today we would like to discuss one item in particular: its possible effect on military aviation. Read more

COUNTERFEIT CHINESE PARTS SLIPPING INTO U.S. MILITARY AIRCRAFT: REPORT

Posted by: ABCnews.com

Author: Lee Ferran

Counterfeit electronic parts from China are “flooding” into critical U.S. military systems, including special operations helicopters and surveillance planes, and are putting the nation’s troops at risk, according to a new U.S. Senate committee report. Read more

HELICOPTER CEOs: COLLABORATION, AFFORDABILITY KEYS TO FUTURE SUCCESS

Posted by: AviationToday.com / Rotor & Wing Edition

By Andrew Parker, Editor-in-Chief

Heads of the world’s major helicopter manufacturers said that technological innovation, R&D spending, collaboration and affordable designs are paramount to the future success of the rotorcraft industry during last week’s AHS Forum 68 in Fort Worth, Texas. Read more